
Abstract. This short paper provides a synthesis of the statistical dis-
closure limitation and computer science data privacy approaches to mea-
suring the confidentiality protections provided by fully synthetic data.
Since all elements of the data records in the release file derived from fully
synthetic data are sampled from an appropriate probability distribution,
they do not represent “real data,” but there is still a disclosure risk. In
SDL this risk is summarized by the inferential disclosure probability. In
privacy-protected database queries, this risk is measured by the differ-
ential privacy ratio. The two are closely related. This result (not new) is
demonstrated and examples are provided from recent work.
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1 Introduction

When Rubin (1993) introduced the idea of fully synthetic data , there was con-
siderable appeal to releasing data that represented “no actual individual’s” re-
sponses, and skepticism regarding its feasibility. Subsequent research has ade-
quately demonstrated the feasibility. However, the basic question “How much
protection does the synthetic data methodology provide?” remained largely
unanswered. The reason is basic: statistical disclosure limitation (SDL) did not
provide an adequate framework to answer the question. In the intervening 15
years, a well-developed methodology emerged in the computer science (CS) liter-
ature on privacy in databases that allows a synthesis of the techniques used in dis-
closure limitation and privacy-preserving data mining. The key to this synthesis
is the recognition that the privacy measures proposed by the computer scientists
and the statistical disclosure limitation methods share a common fundamental–
the conditional distribution of the release data, given the underlying confidential
data. This short paper provides a roadmap and some examples for moving be-
tween the SDL and CS concepts that relate to measuring the protection afforded
by synthetic data and the resulting analytical validity of the release data.

2 Definitions

Let X represent a confidential database organized as n rows and k columns of a
database table. For clarity in this exposition, assume that only discrete variables
may be released and that all variables have been coded as binary outcomes
(e.g., yes-no answers). Although one of the great conceptual advantages of fully
synthetic data is the possibility of combining continuous and discrete variables,
there is no loss of generality in the assumption that the release data consist of
contingency tables because all interactions up to k-way are allowed and there are
no restrictions on the underlying probabilities. As we will see below, there are
practical restrictions on the direct application of these techniques to databases
where k is large. We are not going to discuss sampling as a disclosure limitation
technique; consequently, we will assume that n is the population and ni = 1 is
a population unique. That is, there is one, and only one row of X in which ith

column has a 1.
Let π be the (k × 1) vector of probabilities associated with the complete

table, where all elements of π are strictly positive. Assume that the contingency



table is summarized by a vector of counts n that is also (k × 1) with n =
k∑

i=1

ni.

Without loss of generality, assume that the confidential data are distributed
Multinomial, n ∼ M (n,π) . Summarize all prior information about the parame-
ters by assuming that they are drawn from a Dirichlet distribution, π ∼ D (α),

where α is the (k × 1) vector of prior sample sizes with α0 =
k∑

i=1

αi. Then, the

posterior predictive distribution of the confidential data can be constructed by
noting that π ∼ D (α+ n) a posteriori.

Let X̃ denote a single synthetic data set based on X. Suppose that X̃ is
(m× k). The synthetic data can be constructed by first sampling π̃ ∼ D (α+ n) ,
then constructing the rows of X̃ from counts sampled from M (m, π̃) . Because
of the way X̃ is constructed, we can represent the conditional distribution of X̃
given X using

Pr [m|n,MD] = Eπ|n [M (m,π) |MD] (1)

where we have noted explicitly that the conditional distribution depends upon
the Multinomial-Dirichlet (MD).

The argument leading up to the construction of Pr [m|n,MD] above is a
complete Bayesian analysis, and equation (1) defines the posterior predictive
distribution of X̃ given X. But the Bayesian analysis is not essential to the syn-
thetic data construction. Any transition function Pr [m|n] that defines a proper
conditional distribution for the synthetic counts given the confidential counts
can be used to synthesize data. Dwork et al. (2006) define a synthesizer for the
same confidential database problem by sampling k i.i.d. random variables from
the Laplace (double exponential) distribution Lap (0, 2/ε) , where the reason for
defining the scale parameter in the form shown will be made clear below. Let y
be the (k × 1) vector of Laplacian random variables. Define the synthetic counts
as m = n+ y. Using the properties of the Laplace distribution, they construct
an alternative conditional distribution

Pr [m|n, Lap] = Pr [n+ y|n, ε] . (2)

The above discussion has been in terms of conditional distributions. A generic
random sanitizer is defined as any function X̃ ← San (X,Y ) that maps the con-
fidential data X and random noise Y of specified dimensionality into a sanitized
copy of the database, denoted X̃ here to emphasize its relation to synthetic data.
Because of the way we constructed n from X, there is a completely equivalent
sanitizer m← San (n,y) . Hence, any sanitizer can be used to construct a con-
ditional distribution Pr [m|n, San]. Thus, a discussion of sanitizers is equivalent
to a discussion of the conditional distribution constructed from those sanitizers,
and in the remainder of this paper, we will focus on conditional distributions,
without loss of generality.



3 Statistical Disclosure Limitation and Differential
Privacy

Consider a generic conditional distribution Pr [m|n], and represent the condi-
tional probabilities in a matrix Υ (k × k) . SDL methods focus on the rows of
Υ . For example, if Υ = I, then the release data are identical to the confidential
data. If

max (diag (Υ )) < 1− δ;

then, the release data differ from confidential data in every dimension by at least
δ. That is, for all i = 1, . . . k

Pr [mi 6= ni|n, San] > δ

and the SDL is defined to have infused at least δ−percent uncertainty into
every tabulation. Acceptable levels of δ are usually an inverse function of ni.
Furthermore, the actual values of δ are usually kept secret.

By contrast, the computer science data privacy literature concerns itself with
the columns of Υ. To understand this formally, consider two copies of X, say
X(1) and X(2) that differ in a single row such that

∣∣n(1) − n(2)
∣∣ = 2. While

this condition looks obscure, it amounts to assuming that the two copies of the
database differ on a single attribute of a single row; hence, some ni changes from
0 to 1 while exactly one other nj changes from 1 to 0. Dwork et al. (2006) define
ε−differential privacy as the requirement that

max

∣∣∣∣∣ln
(

Pr
[
m|n(1)

]
Pr
[
m|n(2)

])∣∣∣∣∣ ≤ ε (3)

where the max is taken over ∀n(1),n(2) where
∣∣n(1) − n(2)

∣∣ = 2 and all columns
of Υ respecting the convention that the larger element is placed in the numerator.1

Thus, the computation of the ratios of elements of each column of Υ considers
only those combinations for the numerator and denominator that can be reached
by change of a single row ofX. As an enhancement, Machanavajjhala et al. (2008)
define (ε, δ)−probabilistic differential privacy as the requirement that equation
(3) hold with probability 1− δ for ∀n(1),n(2) where

∣∣n(1) − n(2)
∣∣ = 2, where the

probabilities are calculated with respect to the joint distribution of (m,n), given
α. They interpret probabilistic differential privacy as ε−differential privacy that
fails with probability δ, a rare event.

Conventional SDL methods and differential privacy definitions are related
by the concept of an inferential disclosure. An inferential disclosure occurs when
the attacker can infer the value of a variable for a row in the confidential data
by comparing the release data to the information available without the release
data (the attacker’s information set, or prior). The attacker’s prior knowledge is

1 Dwork et al. (2006) actually call this ε−indistinguishability. Dwork (2006) standard-
izes the terminology to ε−differential privacy.



summarized by the ratio
Pr
[
n = n(1)

]
Pr
[
n = n(2)

]
which measures the extent to which the attacker can ascertain the difference
between n(1) and n(2) without using the release data. The attacker’s gain in
information from having access to the synthetic release data m = m̃ is given
by the posterior odds ratio

Pr[n=n(1)|m̃]
Pr[n=n(2)|m̃]
Pr[n=n(1)]
Pr[n=n(2)]

. (4)

If the posterior odds ratio is large, then the release data contain a great deal of
information about the row associated with the change from n(1) and n(2). At
the limit, if this ratio is infinite, an inferential disclosure is certain. But it turns
out that

Pr[n=n(1)|m̃]
Pr[n=n(2)|m̃]
Pr[n=n(1)]
Pr[n=n(2)]

=
Pr
[
m = m̃|n(1)

]
Pr
[
m = m̃|n(2)

]
Hence, ε−differential privacy limits the maximum gain in information (poste-
rior odds) for an attacker who knows all properties of the disclosure limitation
procedure (Pr [m|n]) , and all rows of X save one, to

max

[
Pr
[
m = m̃|n(1)

]
Pr
[
m = m̃|n(2)

]]

where the max is taken over ∀n(1),n(2) where
∣∣n(1) − n(2)

∣∣ = 2 and all columns
of Υ. Furthermore, (ε, δ)− probabilistic differential privacy limits the maximum
gain in information for an attacker with this information with probability 1− δ.

We can now answer the question posed in the title. Fully synthetic data,
the type we have discussed in this paper, are protective of the confidential data
to the extent that they limit inferences of the type defined by equation (4).
Hence, synthetic data that display ε−differential privacy are guaranteed to be
protective against an attacker with full information about the data protection
process (knowledge of α and n for Pr [m|n,MD] ; knowledge of ε but not n
for Pr [m|n, Lap] ; knowledge of Pr [m|n, San], in general) and knowledge of all
but one row of X. Similarly, synthetic data that display (ε, δ)− probabilistic
differential privacy are protective against the same attacker with probability
1− δ.

Thus, synthetic data that have one of these differential privacy properties pro-
tect against an attacker with an enormous information set, certainly containing
more information than conventional SDL procedures assume. But, what of syn-
thetic data procedures that do not satisfy differential privacy? A sanitizer that
doesn’t satisfy either ε−differential privacy or (ε, δ)− probabilistic differential
privacy displays infinite differential privacy (ε→∞) for some kinds of attacks.



Virtually every SDL procedure in regular use–suppression, coarsening, swapping,
shuffling, sampling, and most noise-infusion techniques–fails to satisfy differen-
tial privacy. For this reason, the users of these methods normally safeguard the
parameters and conditioning information required to calculate Pr [m|n, San].
However, applying a differential privacy audit to synthesizers and sanitizers in
regular use can be very instructive about their strengths and limitations, as we
hope the examples below will demonstrate.

4 Applications

4.1 The Multinomial-Dirichlet synthesizer

m1 0 1 2 3 4 5

n1

HHH
HHn2

m2
5 4 3 2 1 0

0 5 0.647228 0.294194 0.053490 0.004863 0.000221 0.000004
1 4 0.237305 0.395508 0.263672 0.087891 0.014648 0.000977
2 3 0.067544 0.241227 0.344610 0.246150 0.087911 0.012559
3 2 0.012559 0.087911 0.246150 0.344610 0.241227 0.067544
4 1 0.000977 0.014648 0.087891 0.263672 0.395508 0.237305
5 0 0.000004 0.000221 0.004863 0.053490 0.294194 0.647228

Fig. 1. Multinomial-Dirichlet synthesizer with (2,0.0006)-prob. differential privacy

Figure 1 displays Pr [m|n,MD] a Multinomial-Dirichlet synthesizer that has
(2, 0.0006)−probabilistic differential privacy. The synthesizer displays the entire
sample space for n = 5, k = 2, α0 = 1.0, α1 = α2 = 0.5. There is no suppression
in the output; hence, every combination of actual data (rows) can produce any
possible outcome (columns). This synthesizer displays finite differential privacy,
as can be seen in Figure 2. It is the eight cells that have values in excess of 2 that
cause the failure of strict ε−differential privacy, and those cells have a combined
probability of 0.0006.

m1 0 1 2 3 4 5

n
(1)
1 n

(1)
2 n

(2)
1

H
HHHHn

(2)
2

m2
5 4 3 2 1 0

0 5 1 4 1.003353 0.295930 1.595212 2.894495 4.193778 5.493061
1 4 2 3 1.256572 0.494432 0.267708 1.029848 1.791988 2.554128
2 3 3 2 1.682361 1.009417 0.336472 0.336472 1.009417 1.682361
3 2 4 1 2.554128 1.791988 1.029848 0.267708 0.494432 1.256572
4 1 5 0 5.493061 4.193778 2.894495 1.595212 0.295930 1.003353

Fig. 2. Differential privacy values (log posterior odds ratios) for MD synthesizer



The properties displayed in Figure 1 are generic features of Multinomial-
Dirichlet synthesizers that satisfy finite differential privacy. Notice that the cells
that have the largest log posterior odds ratios are those in which the synthesizer
delivers “unusual” outcomes–outcomes that are far from the sample data. The
natural tendency is to set the synthesizer so that it suppresses these outcomes,
but that technique creates zeros in the rows of the transition matrix and, hence,
infinite differential privacy. For these cases, probabilistic differential privacy al-
lows the log posterior odds ratios to be large for exactly the low-probability
outcomes of the synthesizer.

4.2 The Laplace sanitizer

m1 0 1 2 3 4 5

n1

H
HHHHn2

m2
5 4 3 2 1 0

0 5 0.816060 0.159046 0.021525 0.002913 0.000394 0.000062
1 4 0.183940 0.632121 0.159046 0.021525 0.002913 0.000456
2 3 0.024894 0.159046 0.632121 0.159046 0.021525 0.003369
3 2 0.003369 0.021525 0.159046 0.632121 0.159046 0.024894
4 1 0.000456 0.002913 0.021525 0.159046 0.632121 0.183940
5 0 0.000062 0.000394 0.002913 0.021525 0.159046 0.816060

Fig. 3. Laplace synthesizer with 2-differential privacy

Figure 3 displays Pr [m|n, Lap] for the same (5× 2) data matrix with the pa-
rameters of the Laplace distribution chosen to guarantee 2−differential privacy,
as in the example above. In order to make the comparison with the MD syn-
thesizer interesting, We have assumed that the total size of the database, n = 5
is known. Hence, the appropriate distribution for the noise is Lap (0, 2/ε) with
ε = 2 (see Dwork et al., page 8), but there is only one query being protected, not
two, since the total number of rows in the database is known. Figure 4 confirms
that the transition matrix guarantees 2−differential privacy.

m1 0 1 2 3 4 5

n
(1)
1 n

(1)
2 n

(2)
1

H
HHHHn

(2)
2

m2
5 4 3 2 1 0

0 5 1 4 1.489880 1.379885 2.000000 2.000000 2.000000 2.000000
1 4 2 3 2.000000 1.379885 1.379885 2.000000 2.000000 2.000000
2 3 3 2 2.000000 2.000000 1.379885 1.379885 2.000000 2.000000
3 2 4 1 2.000000 2.000000 2.000000 1.379885 1.379885 2.000000
4 1 5 0 2.000000 2.000000 2.000000 2.000000 1.379885 1.489880

Fig. 4. Differential privacy values (log posterior odds ratios) for Laplace sanitizer



The Laplace sanitizer displayed in Figure 3 is also typical. It displays larger
probabilities for the rare events than the MD synthesizer because it never allows
the log odds ratio to exceed 2. But, it is also more peaked around the high-
probability transitions, which is a feature of the double exponential noise used
in the sanitizer.

5 Discussion

This short article is just meant to illustrate what is required to answer the ques-
tion “How protective are synthetic data?” and to provide some generic examples
for simple problems. The two articles upon which we have primarily relied con-
tain many more details of both procedures. In particular Machanavajjhala et al.
(2008) show that the real challenge for the MD synthesizer is to handle prob-
lems where the number of columns in the database is huge. Their example, an
origin-destination commuting pattern database, has 8.2 million rows. Both the
MD synthesizer and the Laplace sanitizer deliver poor analytical validity in this
example unless the domain is coarsened. The MD synthesizer gives poor results
without coarsening because the minimum prior sample size that must be spread
across the 8.2 million possible origins is usually much larger than the number of
sample individuals. The Laplace synthesizer also adds noise to each origin and,
while the properties of the Laplace noise do not depend upon the number of po-
tential origins (8.2 million), if the release data are provided for each origin, the
total amount of noise in the release data is comparable to the M-D synthesizer.

Coarsening the domain can be difficult since all feasible outcomes must have
positive transition probabilities for every row of the input database in order
to preserve either type of differential privacy. Machanavajjhala et al. (2008)
address this problem by combining distance-based coarsening with a probabilis-
tic pruning algorithm. When used in combination, the analytical properties of
the data can be preserved with a (4, 0.0001)−probabilistic differential privacy
(Machanavajjhala et al., 2008, page 9).

Dwork et al. (2006) consider an equally difficult problem–all possible ta-
bles from a census of population. Barak et al. (2008) show how to guarantee
ε−differential privacy by coarsening this problem via a restatement in the Fourier
basis, where far fewer free coefficients are required to guarantee privacy.

There are many unsolved problems in the application of formal privacy mod-
els and SDL to fully synthetic data. This article illustrates the common ground
in the two methodologies and points out ways to implement the procedures in
complex data models.
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