Bernd Lambert was born in Frankfurt, Germany, and the story of his childhood perhaps explains much regarding his curiosity about the world, his kindness, and his meticulous professionalism. His father, Fritz ("Fred") Levy-Oswald, was born in Germany, served in the trenches in the German Army in World War I, and then worked as a banker until intervention by the Nazis forced him out, as a Jew; Josef Goebbels himself was said to have intervened personally at the Deutsche Bank. Fred Levy married Bernd's mother, Sabine (Kahn) Levy, in 1932 and the family moved between Berlin, Frankfurt, and Sofia, Bulgaria; they also had a daughter, Marion, in 1936. In 1937 the family relocated to Sofia, where they were able to stay until once again forced out by Nazi policy in March 1941.

Then ensued a wartime voyage through Odessa, Moscow, and Vladivostok, across the Soviet Union, and then by boat to Tsuruga, Japan, and then Yokohama. Bernd had completed two years at the American School in Sofia, which included a little English instruction, and along the course of that trip served as translator for the family at points, when a little English was the best linguistic match available (they also used German, Yiddish, and Bulgarian along the way, the latter close enough to Russian to get by). Most of their companions on that trip were fellow Jews fleeing the Nazis, from Poland and Bulgaria and elsewhere; at least one family "disappeared" en route, and Bernd's parents had to expend much of the money they had been able to gather for the trip as well as considerable skill at negotiating bureaucracies in order to keep the family moving, fed, and housed. At the end of April 1941 they embarked from Yokohama on a Japanese freight-transport ship for San Francisco. A fellow traveler on the way to San Francisco, concerned about using the recognizably Jewish Levy in front of "Aryan" Germans, suggested that they take on the name Lambert.

Arriving in San Francisco in May 1941, a family of four with almost no resources, with limited English language ability, they spent a week in a detention center for undesirable immigrants until funds from a small account the family had previously set up in New York were forwarded by a family friend there. After almost a year, and night-school classes, Bernd's father was able to get
a position as an accountant, and six years later his mother opened Sabina Lambert's Knitting Studio. In the late 1950s they received some restitution from the German government for their wartime losses.

As a child immigrant growing up in San Francisco Bernd found it difficult to make friends, but developed his senses and powers of observation in that culturally rich environment. In college at Berkeley he took a cultural anthropology course to fill the science requirement in what seemed an easy way, and was drawn to the field both by general curiosity about humans and by what he called "anthropotherapy": the idea of studying others in order to learn about oneself. Alfred Kroeber and Robert Lowie, anthropologists specializing in Native North America who had built the Berkeley department, had retired by the time Bernd was there, but the program still emphasized studies in Native North America; that grounding would prove useful to Bernd at Cornell. He completed his Bachelor's degree in 1954, and after two years of service in the U.S. Army stationed in Germany Bernd returned to continue in Berkeley's graduate program. Bernd later said that he found the discipline then "much more theoretical" compared to the "factual" anthropology that had constituted his undergraduate experience.

In many ways, Bernd’s anthropology spanned most of the history and currents in modern American anthropology. He remained ever-loyal to his original teachers: John Rowe, who was his first anthropology teacher, and convinced Bernd to study anthropology; David Schneider, who assured Bernd that the lack of course work in field methods at Berkeley wouldn’t be a problem for him in his research because he "was an intelligent man"; and, above all, Robert Murphy, who chaired Bernd’s doctoral committee and remained a lifelong friend and mentor.

In 1958 Bernd received funding through the Tri-Institutional Pacific Program (Yale, Hawaii, and the Bishop Museum in Hawaii) to do research in the Gilbert Islands (despite his training focused more on North America, and a personal interest in Africa), and in 1959 he left California for the field. He often talked in later years of how distant and isolated the Pacific islands were then, necessitating a long sea voyage to reach.

Despite the distance, Bernd returned to Kiribati (the current name of the former Gilbert Islands, adopted at independence in 1979) nine times over the next 50 plus years, most recently in 2012. He worked primarily on two of the more than 30 atolls which comprise the island nation, Makan and Butaritari. Much of his work was on kinship and adoption on these islands, a subject he learned about by being adopted into the fabric of Kiribati society. One of his fellow Micronesian anthropologists hailed him by saying "Kiribati was in him and he was in Kiribati."

In Kiribati, Bernd uncovered a system of ambilineal kinship relations which was in contrast to the unilineal systems of descent and inheritance in many other parts of the world. In an ambilineal or cognatic system, people honored relatives on both sides of their genealogy equally. Bernd was also sensitive to the ways that kinship was created through adoption and fosterage. He found that many children lived in households other than those of their birth parents. Some of these arrangements were similar to adoption in western societies where the care-giving adults became the parents of the children. Other arrangements were less permanent but arose from status differentials where higher status families sent their children to live with those of lower status for a period of time, thus bestowing status to those families.
After completing his Ph.D. at Berkeley in 1963, Bernd took up a post-doctoral position at the University of Pittsburgh for 1963-64 (where even the Pirates winning the World Series could not dislodge his never-waning devotion to the Giants). Bernd joined the Department of Anthropology at Cornell in 1964 and dedicated his entire career to students and colleagues with unfailing generosity until his death. His prolific reading, expansive scope of interests, and nearly encyclopedic memory made him an ever-engaging colleague and unique teacher. Interacting with students in and out of the classroom, Bernd was a fount of provocative ideas and inspiration for generations of Cornellians, and prodigious in his service to students. His courses -- notably "Myth, ritual and symbol" and "Kinship and social organization" -- were anchors of the Cornell Anthropology program and shaped the reputation and impact of Cornell’s distinctive vision of anthropology throughout the country.

With Bob Smith, Bernd started Cornell's first regular course on North American Indians in 1972. He continued to teach that course for many years after, and was also an active -- but never controlling -- member of the American Indian Program after it was begun a few years later. As a teacher, Bernd was exceptional, not only for the breadth and clarity of his lectures, but especially for the kindness and charity with which he responded to student questions: his was a skill which defined the art, transforming even the most awkwardly conceived question into something that not only made the asker feel good, but became an opportunity for adding new knowledge to the exchange. Few will ever approach his ability to make even ambilineal descent groups in the Northern Gilbert Islands unabashedly riveting. Integral to Bernd’s presence in Anthropology was his willingness to continue to share his love of teaching and students beyond the classroom. His gurgling laughter -- almost a giggle -- was infectious, and he shared it and himself generously at colloquia and social gatherings.

Bernd was a socio-cultural anthropologist in the full sense of the term, a student of comparative social formations as they are grounded in extensive empirical field studies of one or more different societies. His work developed as the traditions of Europe and America, sociology and cultural anthropology merged in a more integrated approach to epistemology, linguistic and cultural forms. The bringing together of different theoretical traditions and ethnographic instances involved in creating the discipline of socio-cultural anthropology was a challenging project fraught with conflict between established authorities, national traditions and theoretical positions. Bernd stood out for the humor, humility, and understanding with which he was able to mediate the differences while keeping in sight the promise and potentiality of the field.

Bernd was a bibliophile and was always reading multiple books at one time. He annotated each book he bought with the date, place, and often occasion of its purchase. After retirement, he remained a regular participant in departmental events and continued to work with and advise students, particularly a few interested in Pacific Island languages. The passing of first Marcia and then Bob Ascher took Bernd to the synagogue for their services, and he recognized there traditions and philosophies not pursued, but deeply resonant. Before his untimely death Bernd had been working with his fieldnotes from Kiribati, on language and culture, with graduate student Kathryn Hudson and on his own; on gender relations and their expression in mythic stories (he gave a lecture in the Cornell Anthropology Department in October 2014 entitled...
"Mothers and Sons: the Female Side of Kiritibati Cultural Heroes"); and on his family history. Some of these materials may be published posthumously.

Frederic Gleach, chair; Jane Fajans, Kathryn March
Robert J. “Jack” Lambert

August 25, 1927 – August 8, 2014

Professor of Freehand Drawing, Jack Lambert, instructed in and directed a program of visual communication established at Cornell University’s founding for landscape design majors. He demonstrated a remarkable combination of natural ability in drawing, sketching, and watercolor painting with ability to impart techniques and knowledge to his students. In recent decades, his elective Freehand Drawing courses also nurtured the artistic development of innumerable students throughout the University.

Born in Tremont, Indiana, and raised there and in Dayton, Ohio, Professor Lambert served in the military in 1945-1946. He then entered Cornell University as an undergraduate majoring in Zoology (Anthropology), where he also assisted in the teaching of drawing. He served as fisheries aide, U.S. Fish and Wildlife Service, Woods Hole, Massachusetts, summer of 1949. Lambert received a Master of Science degree in Anthropology and Zoology at the University of Michigan in 1951. In 1951-1952, he was chemical laboratory assistant for Dayton, Ohio, Water Department, analyzing industrial waste and domestic pollution. He spent much of 1952-1953 in anthropological fieldwork in the mountains of Peru in cooperation with the Cornell-Peru Project, the University of San Marcos, and the U.S. Point Four Program, before receiving a letter from Professor Elizabeth Burckmyer, offering an instructorship in drawing at Cornell. Accepting the offer, he returned to Ithaca fall, 1953, where he would spend the next 45 years teaching drawing and watercolor painting in the Freehand Drawing program. Anthropology still interested him, and he devoted many of his first summers to fieldwork in Cuba, Jamaica, and the British West Indies. In following summers he painted in the islands of the Fiji group, South Pacific, as well as along the New England Coast, Nova Scotia, and Quebec. He met Nina E. Weingarten at Cornell studying for her masters in Child Development in 1955; they were married in 1956.

During unsalaried leave, he continued professional improvement through formal and informal studies with Norman Daly, Cornell University, 1957; Woodcut studies with Antonio Frasconi, Pratt Contemporary Graphic Art Centre, New York, NY, 1957; lithography course with Richard

He was promoted to Assistant Professor in 1958, Associate Professor in 1965, Professor in 1977, and Professor Emeritus in 1998. He was a valued member of a faculty where art and science did not always intermingle comfortably, and led the Freehand Drawing program from 1962 until his retirement.

Sabbatical leaves in 1968 and 1975 were devoted to sketching and watercolor painting of landscapes in England. In 1981 he toured and sketched gardens of the eastern United States seaboard.

Lambert’s artwork has been exhibited in numerous galleries, museums, and juried shows – including Upstairs Gallery and Ithaca College Group Show. His art work is found in many private collections and was featured in publications, including Good Times Gazette and Cornell Countryman. Cornell University commissioned many of his works. Kendal of Ithaca featured a retrospective of his work fall, 2013, and in 2015, the Village of Cayuga Heights, for which Lambert’s artwork is still found on the letterhead, also featured a retrospective of his work in celebration of the Village Centennial.

Gardening was a passion he shared with his wife, Nina, creating together a much toured rock garden at their home in Cayuga Heights. He collaborated with Professor William C. Dilger on the design of the rock garden at the Cornell Plantations. He taught numerous mini-courses and workshops at Cornell Plantations, Boards of Cooperative Educational Services, and meetings of the New York Federated Garden Clubs. He participated in running the American Rock Garden Seed Exchange in 1975-1976. From 1973-1976, he volunteered with the Tompkins Girls Hockey Association as timer, assistant coach, and coach.

Even in this increasingly digital age, a stub of pencil and a scrap of paper remained Professor Lambert’s primary means of expression, and he always found time and inspiration to sketch a little every day. Jack inspired generations of artists who now engage in all walks of life, from the life sciences, to communications, marketing, medicine and a host of other disciplines. He taught the power of keen observation, and encouraged students to pause to record nature’s beauty everywhere. He possessed a wry wit, strong opinion, and a unique lens through which he viewed the world. And his dedication to teaching made him beloved by students. After additional years of emeritus teaching concluded, he continued to teach an informal class with a select group on campus.

Visit the Jack Lambert memorial website, http://jack.lambert.muchloved.com/, for examples of his art and where friends, former students, and admirers have posted remembrances.

Thomas C. Weiler, chair; Marcia Eames-Sheavly, Carl F. Gortzig
Olaf Larson, Professor Emeritus of Rural Sociology, passed away on November 14, just three months shy of his 108th birthday. Prior to his passing, Olaf was Cornell’s oldest emeritus professor. Professor Larson was born in 1910 in Rock County, Wisconsin where his parents were tenant farmers until they purchased the farm in 1923. Olaf graduated from a one-room school prior to matriculating at the University of Wisconsin in Madison. At Wisconsin, he studied agricultural journalism with additional work in soil science and agronomy. Four years after obtaining his B.S. degree, Olaf earned a Master’s degree in agricultural journalism with a minor in agricultural economics. He went on to do his Ph.D. study in rural sociology, a field that was to become his life’s passion.

After completing his preliminary exams for the Ph.D. in 1936, Olaf left Wisconsin to join the faculty of Colorado State University (then Colorado State A&M) as an assistant professor. It was at Colorado State that Professor Larson’s reputation as a rigorous social science researcher, and a keen observer of rural life in the United States, began to develop. Olaf’s research during this time focused on national studies pertaining to rural relief problems, farm labor, farm families, population change and mobility, and a study of three Colorado communities as part of a nationwide study of agricultural communities. It was also where he met and married his wife, Clair.

After being promoted to associate professor in 1937, Olaf left Fort Collins to begin his career’s second chapter at the United States Department of Agriculture’s Division of Farm Population and Rural Life. The Division was the first federal government agency devoted to sociological research. As Olaf, and his longtime colleague, Julie N. Zimmerman, were to show in two landmark books published in the 2000s, the “Division” was hugely influential in developing theory-driven empirical social science in America. Olaf’s wide ranging research for the Division foreshadowed the issues that were to define his scholarship throughout his career-rural development, racial and other forms of inequality, and farms, farmers and farm families. In 1941, while still employed by USDA, Professor Larson completed his Ph.D. at the University of Wisconsin.

Along with many other federal agencies, the Division was moved out of Washington DC early in World War II. These moves were made to reduce the risk of disruption in the case of an attack on the capital. Olaf was moved to Cincinnati, Ohio where he led the Division’s research on rural rehabilitation and low income farm families. When a new regional office was established in
Portland, Oregon, Olaf was transferred there to be the Division’s western regional leader. While in Portland, Olaf directed and conducted research on rural poverty, with a particular focus on very low income families. He also led the region’s contributions to a nationwide effort to establish cultural regions within rural America.

In the summer of 1946, Olaf accepted an associate professorship in Rural Sociology at Cornell. Thus, started the third of four stages in Professor Larson’s scholarly career. Olaf’s work at Cornell spanned all three Land Grant functions: teaching, research and Extension. At Cornell, Olaf was able to conduct research on many sensitive issues that were out of bounds while he worked for USDA. These included migratory farm labor, rural health, and rural values and beliefs, along with his continuing focus on rural community organization. During this time, he testified before Congress, his research was used by the President Lyndon B. Johnson’s Commission on Rural Poverty, and by the New York State Legislative Committee on Migrant Labor. For Extension, Professor Larson produced demographic data in a form that was useful to local appointed and elected leaders. His “People of New York:” series was produced for over 20 years. In addition, he was the first director of the Northeast Regional Center for Rural Development, one of four regional centers established by USDA through Title V of the 1972 Rural Development Act. In 1957, Professor Larson became Head of the Department of Rural Sociology (now Development Sociology). He served in this capacity from 1957-1966. In the 1960s, Professor Larson was influential in developing the College’s leadership role in international agricultural development studies. This area became institutionalized as the College’s “4th dimension” along with teaching, research and Extension.

At Cornell, Professor Larson became an internationally recognized scholar of rural life in America. He was twice selected as a Fulbright Scholar (1951-52 in Oslo, Norway and 1961-62 in Naples, Italy); voted into the prestigious Sociological Research Association in 1954; elected president of the Rural Sociological Society in 1957-58, and awarded the RSS’s career award of Distinguished Rural Sociologist in 1985. His profound influence on rural research and teaching far exceeds his personal scholarship. During his career at Cornell, Professor Larson chaired 69 graduate committees, and served as a minor member on 85 more. Many of these scholars have gone on to distinguished careers of their own.

In 1975, Professor Larson was forced to retire due to mandatory retirement laws at the time. Retirement notwithstanding, he remained an active scholar for more than a quarter of a century. His research with Dr. Minnie Miller-Brown of North Carolina State University on Black farmers, for instance, was presented to the Congressional Black Caucus. In addition to articles on the history of rural sociology, Olaf co-edited an influential book on the sociology of agriculture with Cornell Professors Fred Buttel and Gilbert Gillespie.

In the late 1980s he began research exploring the profound impact on social science research and public policy of the USDA’s Division of Farm Population and Rural Life–the first unit of the federal government devoted to sociological research and for which he had worked. This project, supported by the Rural Sociological Society, the American Sociological Association and Cornell University’s Agriculture Experiment Station, spanned into the 1990s resulting in three books. Even after Olaf and Clare moved to a retirement community in Mt. Dora, Florida he remained an active scholar and writer. While he would lose his wife and lifelong partner, Clair, in 2011, Olaf published two more books during his centennial year. One of the books, the final in his series on social science research in the USDA, was nominated for the ASA’s History of Sociology Section’s Distinguished Scholarly Publication Award. The other book, published by the University of Wisconsin Press, was a memoir of Olaf’s boyhood in rural Wisconsin.
Professor Olaf Larson was the last of a generation of rural sociologists, and in many ways his career traced the history of rural sociology. He was the Rural Sociological Society’s (RSS) oldest past president, the oldest member of the RSS, the oldest sociologist and rural sociologist in the nation, and the last person who had worked in the first unit of the federal government devoted to sociological research. To honor his long years of achievement, “in recognition of his significant commitment and contributions to the discipline of sociology” the American Sociological Association bestowed Olaf with an honorary lifetime membership. His legacy lives on many ways including the Cornell’s Department of Development Sociology where the Larson Award for Excellence in Sociology is bestowed each year to the Department’s outstanding junior.

Written by David Brown (chair), Parfait Eloundou-Enyegue and Julie Zimmerman
Michael Charles Latham died in Boston Massachusetts on April 1, 2011. He was born in Kilosa, Tanganyika where his father was a physician in the British Colonial Service. He grew up in Tanzania and later studied medicine at Trinity College, Dublin, where he earned a degree in 1952. He worked in hospitals in the United Kingdom as well as in the United States before returning to Tanzania to practice medicine. His postgraduate study was in tropical public health, in which he earned a diploma from the London School of Hygiene and Tropical Medicine in 1958, followed by a Master of Public Health degree from Harvard University in 1964.

From 1955 to 1964 Michael occupied several positions in the Tanzania medical services and became director of the nutrition unit of the Ministry of Health. In recognition of his outstanding service, in 1965, Michael was awarded the Order of the British Empire (OBE) by Queen Elizabeth II for his work on developing the nutrition unit. The award also recognized his leadership in establishing the International School, an integrated primary school in Dar es Salaam.

After 4 years teaching nutrition at Harvard and carrying out research in Latin America, Michael was appointed Professor of International Nutrition in the Graduate School of Nutrition at Cornell in 1968. He directed the program in International Nutrition at Cornell for the next 25 years. Under his auspice, the program grew in breadth, depth and influence to include a large body of faculty and graduate students and an impressive broad range of research and related programs in Asia, Africa, Latin America and the Caribbean. It quickly enjoyed worldwide recognition as an outstanding program. He taught and carried out research throughout the world until his retirement in 2004.

Over the course of his academic career Michael mentored more than two hundred graduate students and served as the committee chair for 115. Today his students are found in important positions worldwide in universities, UN agencies, in governments and other organizations, where they have become today’s leaders in the field. His scholarship includes over 450 publications and several books, including "Human Nutrition in Tropical Africa" and "Human Nutrition in the
Developing World” as well as a wonderful personal account co-authored with his mother titled “Kilimanjaro Tales: The Saga of a Medical Family in Africa”.

His research, teaching and public service focused on breastfeeding, infant and child health; parasitic infections and their relationship to health; micronutrient deficiencies, especially iron deficiency anemia and vitamin A deficiency; and nutrition and human rights. He was an active defender of the right of children to have proper nutrition and care and was an avid promoter of food-based approaches to nutrition.

Michael played an important role in drawing international attention to the serious problems that “bottle feeding,” was creating for infants around the world. He also drew attention to the role of aggressive promotion of infant formula in poor countries as early as 1963 when he was working in Tanzania. In his thought provoking speeches Latham used to say, "the first food crisis” is a child’s deprivation of his or her mother’s breast milk. He led a more than decade-long battle against corporations marketing infant formula, which ultimately led to the adoption of an international code for marketing breast milk substitutes by the World health Organization in 1981. He then co-founded the World Alliance for Breast Feeding Action in 1991 to promote breastfeeding and protect this right for infants and their mothers.

With his wife Lani Stephenson, their students and colleagues at Cornell and Cambridge universities, he carried our research on the impact of parasitic infections including ascariasis, schistosomiasis, and hookworm, on child growth, anemia, physical fitness and labor productivity. As early as 1968, Latham was pointing out the importance of distinguishing between acute and chronic malnutrition, and the need to consider height as well as weight of children to determine their nutritional status and, most importantly, that solving these different malnutrition problems called for different approaches.

After his retirement, he continued to speak at world forums and write important commentaries. He spoke eloquently about the dangers of relying exclusively on costly magic bullets such as the promotion of ready-to-use therapeutic foods and the blanket distribution of Vitamin A capsules to prevent malnutrition. He made the case for better allocation of scarce resources toward more sustainable and affordable food-based approaches, blanket immunization against measles and the reduction of the burden of parasitic infections to solve child malnutrition in developing countries.

In 2005 he was awarded the Lifetime Achievement Award from the American Public Health Association (APHA) for "demonstrated sustained commitment to the promotion and development of primary health care and creativity in expanding concepts pertinent to the practice of public health with an international focus”. The chair of the awards committee wrote to Latham: "The committee was impressed by your tireless work on international nutrition, particularly on the promotion of breastfeeding". The United Nation’s Special Committee on Nutrition (UN/SCN) gave him the Award of Merit in 2008 "in recognition of outstanding lifelong contributions and service to nutrition.” He was bestowed with the title of “Living Legend” at the International Congress of Nutrition in 2009, in Bangkok, for his role as "respected leader in nutrition whose significant contribution is recognized at national, regional and international levels".
Michael Latham will be remembered for his scholarly work, his intellectual honesty, critical thinking, and for his advocacy for the causes of the most vulnerable poor, whom he supported with his beliefs and convictions even in the face of controversies. He was a caring mentor to his students and inspired and actively supported a community of young African nutritionists, many of them his students. Michael frequently went to visit the most deprived communities, especially on the African continent, to keep in touch with his students and with the problems of the poor and vulnerable.

For many of his former students and colleagues, his passing was like a sudden untethering. He was the voice of conscience for the nutrition community encouraging nutritionists to keep in touch with the human faces of malnutrition as they conduct research and apply nutrition science to solving problems amidst today’s plenty. He forcefully articulated the concerns of the poor and vulnerable, especially that of poor children in developing countries and their mothers.

He is survived by his life partner Lani Stephenson, his son Miles and son Mark with wife Theresa and thousands of friends and collaborators whom he inspired around the world.

His legacy is defined by his approach: using honest and caring science to address the nutrition issues of the underprivileged. The causes he passionately believed in will carry on through all those he worked with and influenced and his spirit lives on in the many lives he has touched.

*Malden Nesheim, Chairperson; Gretel Pelto, Suzanne Gervais*
Irving Lazar Ph.D. died peacefully on May 1, 2012. Born to Charles and Sylvia Lazarowitz on February 20, 1926 in NYC. He is survived by his wife of 30 years, Dr. Jules M. Marquart who earned her Ph.D. from Cornell; children, Kathryn, Jim, Richard; 3 grandchildren, and 2 great-grandchildren, and 2 sisters. A veteran of WWII, Dr. Lazar obtained his B.S. at City College of New York, and M.A. and Ph.D. in psychology from Columbia University, and completed an internship at the Menninger Clinic. His distinguished professional career focused on improving the lives of children and families, in the United States and abroad, through teaching, research, and program and policy development. In the 1950s-60s, Dr. Lazar served as the associate commissioner of mental health in Nevada; a reserve officer in the U.S. Public Health Service in Washington, DC; founder and executive director of the Peterson-Guedel Family Therapy Center in L.A.; and executive director of the Neumeyer Foundation in L.A. He also served as a consultant to the US Office of Economic Opportunity on the development and evaluation of Head Start and community action agencies as part of President Johnson's War on Poverty. In the 1970s and the 1980s Dr. Lazar directed a national evaluation of headstart, publishing the results in a widely recognized book "As the Twig is Bent" which was able to verify the extent of Headstart's benefits for underprivileged children. He was the Associate Director of the Appalachian Regional Commission in Washington from 1970-72. From 1972-1991, he returned to academic life as a professor and chair of the Department of Human Service Studies at Cornell University, during which time he also served as the Coordinator of the Sloan Program in Health Administration after it moved from the Business School to Human Ecology.

Professor Lazar retired as Professor Emeritus in 1991. He was awarded the Distinguished Service Award from the Division of Early Childhood of the Council on Exceptional Children in 1984. In Nashville, he was a resident scholar at the Kennedy Center for Research in Human Development, and served on numerous community boards. In the mid-1990s, Dr. Lazar served on the external faculty of the Santa Fe Institute, where he applied complexity theory to the infant as a complex, adaptive system.
Dr. Lazar may be best known for founding and directing the Consortium for Longitudinal Studies in the 1970s, a group of 11 academic researchers who collaborated in conducting long-term follow-up of their participants from preschool into adolescence and pooling their data in a prototype of meta-analysis. Through Dr. Lazar's widespread dissemination of findings to Congress and in over 40 states, study results were used to help save Head Start funding and to increase early childhood program funding in states. Professor Lazar did considerable international consulting and speaking, especially in New Zealand, Europe, Canada, Japan, Thailand, Hong Kong, and India. He and Dr. Marquart worked with Dr. Joan Bergstrom of Wheelock College, on a United Nations Development Program project in Singapore from 1988-91 to develop policy, training and evaluation of its national child care system. He was also a research fellow in the Population Institute at the East West Center in Hawaii.

Andrea Parrot, Chairperson; Bettie Lee Yerka
Thomas Whittlesey Leavitt, Professor Emeritus and founding director of the Herbert F. Johnson Museum of Art for 23 years died at the age of 80 on October 14, 2010 in Sanderson, Massachusetts.

Thomas Leavitt was born in Boston, Massachusetts on January 8, 1930, into a distinguished New England family that included the sculptor Bela Pratt. He received his B.A. in American Literature in 1951 from Middlebury College, a master’s degree in 1952 from Boston University in art history of the 19th and 20th centuries, and a Ph.D. in 1958 from Harvard University in the history of American painting and sculpture.

In 1968 he came to Cornell after serving as director of Museums in Pasadena and Santa Barbara, California. As director of Cornell’s A.D. White Museum of Art before the Johnson was built, he organized a pioneering show on Earth art, installed across campus in February 1969.

Leavitt was the founding director of the Herbert F. Johnson Museum of Art for 18 years, a professor emeritus of the history of art and a recognized leader in the museum field. Leavitt organized more than 100 exhibitions and wrote numerous articles and catalog essays, ranging from the American portraiture and the arts of New Guinea to Albert Bierstadt, Piet Mondrian and Cornell exhibitions of work by George Kolbe, Georgia Loring Brown and Agnes Denes.

Working with I.M. Pei, John Sullivan and Pei’s architectural firm, Leavitt helped supervise the design and construction of the Bauhaus-inspired Johnson Museum building. He served as the museum’s director from its inception in 1973 until his retirement in 1991. Tom was the first director appointed to lead the Museum Program of the National Endowment for the Arts and he also served as president of the Association of Art Museum Directors and the chair of the American Association of Museums. Leavitt received the American Association of Museums’ Distinguished Service to Museums Award in 1997, the field’s most prestigious honor.
Tom also held leadership, board and advisory positions in numerous arts organizations, including the American Art Alliance, American Federation of the Arts, Rhode Island Historical Society, National Air and Space Museum, National Museum Committee for Art Against AIDS and the New York State Council on the Arts.

Franklin W. Robinson, current Director of the Herbert F. Johnson Museum writes,

*Tom was a superb director, and what he did here has been the solid foundation for everything since then. He was also a man of kindness and civility, and it was a privilege to know him, and to be his successor in this great museum.*

Following Leavitt’s retirement, he served as interim director of the Rhode Island School of Design’s Museum of Art (1992-93) and director of the Newport Art Museum and the Museum of Our National Heritage. Leavitt was an avid sailor for more than 35 years, with interests in wooden boats and racing. He is survived by his wife, Michele, five children and five grandchildren.

Dean of Faculty Office (Information gathered from Ithaca Journal Obituary and Cornell Chronicle)
Richard Leaman (Dick) Leed was above all a passionate language teacher. He was born and grew up in Lititz, in southeast Pennsylvania, and could trace his ancestry to Mennonites and other early German-speaking settlers. After undergraduate studies at Oberlin with time out as a school French teacher, he came to Cornell in 1954 to study Slavic linguistics. While still a graduate student he was asked to teach in the Division of Modern Languages, and continued teaching until his retirement in 1994. His doctoral thesis (1958) dealt with the history of Czech, but almost all of his teaching both before and after its defense was in Russian.

A memoiristic section of Dick's website accurately states: "The major field of activity in my academic career was Slavic linguistics, particularly Russian, and particularly Russian language pedagogy." He also was interested in the history of the Slavic languages and developed courses in that area. His title was Professor of Linguistics, but he cultivated the science of linguistics specifically for its ability to further language teaching. Nearly all of his publications were textbooks or reference materials, two genres requiring at least as much research as strictly theoretical books and articles.

Not all readers will recall the context in which the Division of Modern Languages (later Department of Modern Languages and Linguistics) arose. During World War II the U.S. Government suddenly needed to train soldiers and civilians in many languages never previously taught in North American institutions. It, quite sensibly, enlisted practitioners of the then young science of linguistics. In what later became known as the Army Method, a linguist would work with a speaker of an Asian or European language in a classroom of students. The speaker would lead the learners in many hours of 'drill' while the linguist would analyze the language and provide explanations in careful, understandable doses. The skills attained were sufficiently striking that some of the pioneers thought of introducing the Army Method at Cornell. The Arabic linguist J. Milton Cowan established the DML in 1946, hiring wartime linguist colleagues and, more and more, Cornell's own linguistics Ph.D.s like Leed, experienced in one or more of the dozens of languages to be taught.
These early faculty members had also made notable contributions to theoretical linguistics, but Leed ruefully observed the center of gravity shift from language teaching in the direction of pure theory, even during his own chairmanship of the Department in the 1970s. This he saw as an unintended consequence of the rise of the Chomskyan approach to linguistics; though Chomsky's earliest co-workers had known and analyzed many languages, some later adherents seized on Chomsky's apparent claim that languages were so similar deep down that one could find out everything just by working on English. (Leed countered this in his own way, as cited by John Bowers below.)

Another tenet Dick stood by was that all change is bad. Nevertheless, in the 1970s, he changed the direction of Russian language teaching at Cornell, putting it on the path of modernization and flexibility that it has followed ever since. Through all administrative reorganizations it has continued to equip students with solid skills that they have put to unexpected uses. Among the instructors of all other languages taught at Cornell, he was likewise seen as the source of wisdom and support.

Leed was an early user of computers for what we would now call desktop publishing. Several of his textbooks were self-typeset on an early 1980s Terak for which he created Russian-alphabet fonts.

Dick was one of the Russian-English translators at the American National Exhibition in Moscow in 1959 (site of the Nixon-Khrushchev debate). Thereafter he did not seek research stays in the Soviet Union, a choice that freed him from a dilemma felt by some fellow Slavists. He could give his unvarnished opinion of the Soviet system without concern that the authorities might deny him a visa.

In retirement Dick continued a favorite pastime, writing letters to newspaper editors giving his frank and often contrarian views on burning questions of the day. He turned from Russian to early English language studies. Working out the rules for dividing Shakespeare's lines into metrical feet, he applied these rules to 'scan' all the plays. He developed a consistent spelling system for Chaucer's language, reflecting the pronunciation more faithfully than the poet's own, and demonstrated it on six of the Canterbury Tales. His web site http://www.shakespearescanned.com/ has his scanned texts of Shakespeare, his respelled texts of Chaucer with audio files of his own reading, his many argumentative letters to newspapers, his unofficial history of language teaching at Cornell, his thoughts on reinterpreting parts of the Bible, and his family history. Shortly before his death he instructed his son Andy to keep the site in existence as long as there was interest in it. And indeed, not only do general readers find the site, but the Linguistics Data Consortium of the University of Pennsylvania has shown interest in the corpus of verse data.

A humorous autobiography and a brief C.V. are on the Russian program's site http://russian.cornell.edu/index.cfm?MainFrameURL=rusian.web/people/rll.cfm.

Dick was known for his appreciation of many periods and genres of music, but most of all Bach and earlier composers. In the 1970s he would gather colleagues at his home to sing and play on various instruments even such demanding cantatas as O Ewigkeit, du Donnerwort. In keeping
with his love of music, the memorial scholarship established in his name in Jefferson County, Iowa, supports Fairfield High School graduates wishing to study either languages or music.

He is survived by two sons and a daughter, their respective spouses, and several grandchildren.

Professor John Bowers, one of Leed's successors as department chair, when notifying colleagues of Leed's death summed up his life and works in a few sentences: "Dick will be remembered by those who knew him as a man of strong opinions who delighted in a good-tempered joust with anyone willing to take him on. He was a skeptic and a traditionalist who delighted in puncturing the verities of liberals but was also one of the most genuinely kind and caring individuals I have known. Dick was a scholar of Russian and founded the excellent Russian language program which continues to this day. In place of the universalist creed of Chomskyans, Dick substituted his own dictum: 'All languages are more or less like Russian.' Dick was devoted to music, especially the music of J.S. Bach, and to the sheep which he and his wife Gerry raised for many years on their farm on Garrett Road." Much beloved by many, he is sorely missed.

Wayles Browne, Chairperson; Slava Paperno, John Wolff
Dr. Robert Lewis was born in Flushing, NY and attended Grant high school in Portland, OR. His professional training was at Washington State University where he graduated Doctor of Veterinary Medicine in 1961. Bob had married Sandra Jane Shurleff in 1958 and they relocated to the Boston area where the first 15 years of Bob’s professional career were spent. He attended the Angell Memorial Animal Hospital as a resident in anatomic pathology under the legendary TC Jones. Bob duly obtained board certification from the American College of Veterinary Pathologists; soon followed a long and productive career of laboratory research in comparative medicine in the rich biomedical environment of central New England, focusing on spontaneous autoimmune disorders in domestic animals.

Bob joined the Pathology departments at Angell and Tufts-New England Medical Center - his belief in one medicine was alive and well. Human disorders such as lupus erythematosus, rheumatoid arthritis, Sjogren’s syndrome and other related conditions were thought not to afflict animals but through careful investigation Dr. Lewis showed for the first time that such maladies did occur in animals also (particularly dogs). These disorders were documented and the potential role of viruses in lupus was uncovered, work of great excitement and potential. Important collaborations were established with Dr. Robert Schwarz, Dr. Fred Quimby and others.

A new challenge presented itself and in 1975, Dr. and Mrs. Lewis moved from Boston to Ithaca, NY and Cornell University where Bob had accepted the position of chair of the Department of Pathology at the College of Veterinary Medicine. He considerably expanded the department, bringing in veterinary pathologists with expertise in a variety of areas that have gone on to become leaders in their fields and formalized residency training and graduate studies such that veterinary pathology at Cornell came to take a pre-eminent position nationally and internationally, a standing it retains to this day.

Over the following 25 years, Bob taught in the professional DVM curriculum, shared service in surgical pathology and necropsy with the other pathologists, contributed to graduate courses, mentored Ph.D. students and managed the department in a style that was uniquely his own. He
particularly enjoyed his role as a teacher, advising veterinary students and residents. The theme of his early investigative endeavors – autoimmune diseases - continued with work on spontaneous renal and skin conditions (glomerulonephritis and pemphigus). His laboratory was a rich environment in which many residents, Ph.D. students, and visiting scientists cut their teeth in laboratory methodology. He coauthored a handbook of Veterinary Clinical Immunology which well reflected the range of his interests, reaching from basic immunology to clinical medicine. He worked hard and played hard, invariably to be found at Cape Cod over the summer with Sandy and their children Jon and Karin. Fishing from the “Mongrel,” accompanied by friends old and new and professional colleagues was the favored occupation and while during the academic year many social events were enjoyed at the Lewis home on Sunny Slope Road.

Dr. Lewis stepped down as chair after a decade but remained as a member of the department until retirement in 2000. Bob and Sandy relocated to Kentucky with Karin and her husband until Sandy’s untimely death. Bob spent the last years at the family home at Barnstable Village on the cape, dying in August 2011 after a long illness.

Donald Schlafer, Chairperson; Barry Cooper, Brian Summers
Richard L. Liboff, Cornell professor emeritus of electrical and computer engineering for almost 35 years, died March 9 in New York City. He was 82.

Richard was born Dec. 30, 1931, in Brooklyn, New York, and educated at Brooklyn College (Bachelor of Arts, 1953). He earned his Ph.D. in physics at New York University in 1961, and began his academic career teaching physics there while working as a research associate at the Courant Institute of Mathematics. In 1964 the College of Engineering was beginning to hire promising young faculty in an effort to build up the research program, and Richard was identified for his expertise in applied mathematics and plasma physics. He was hired by the School of Electrical Engineering to help build a new curriculum and research agenda. The first few years of graduate students in plasma physics at Cornell all learned the basic theoretical intricacies of the field from this very gifted teacher.

Richard specialized in applied mathematics as applied to plasma physics, kinetic theory, electrodynamics and quantum mechanics.
He co-chaired the first International Symposium on Kinetic Equations here in 1969. He was the principal investigator on federal grants in theoretical plasma physics, a member of the American Physical Society and of Sigma Xi, the science fraternity. He was promoted to professor of electrical engineering and of applied and engineering physics in 1970.

He taught many courses in electrical engineering, including electromagnetics, plasma physics, kinetic theory, and quantum mechanics. He loved interacting with the students, both in and out of the classroom. One of his trademarks was to close the door to the classroom forcefully as he entered, signifying the beginning of class. One day the students removed the pins from the door, and as he slammed it, the door went flying and hit the floor with a loud bang! That cured him of his grand entrances. The graduate student equivalent of this flourish occurred often because Richard was always in the middle of a calculation if he was in his office with the door closed. Graduate students who knocked on the door learned quickly to “read” the tone-of-voice of the loud “come-in” in order to decide to ask to talk with him right then or the next day. Make the wrong choice and you could be in the middle of a complicated applied math problem with Richard for 2 hours instead of getting the one-word answer you needed to a simple question.

He also enjoyed playing chess. His office was near the front entrance of Phillips Hall, so he saw lots of people come and go. When he saw a new face he would enthusiastically ask “Do you play chess?!” Few people who entered Phillips Hall while Richard was active escaped this invitation. If he were a worthy opponent, that person could depend upon an invitation to his home for a meal and a few more games.

He always enjoyed continuous learning, regardless of the subject. With the arrival of students from abroad each year he would become acquainted and then ask them to teach him a phrase in their native tongue. He could say, “Do you speak…(fill in the blank)?” in over a dozen languages. He also loved to engage new faculty in conversation and learn what they were doing; his curiosity had no bounds.
We all knew him as a loveable character. He was constantly trying to master new subjects or new math, and when he ran into a problem he would seek help from one of his colleagues. His trademark technique with fellow faculty members was to burst into someone’s office, go straight to the blackboard and start outlining the mathematics of the problem. As he started to explain it, usually to a completely bewildered faculty member who had been otherwise engaged until his door flew open, Richard would suddenly discover the insight he was missing, exclaim “Ah, that’s the answer. You are a genius!” and then run back to his office. This whole process took perhaps 30 seconds, and it happened so often that many of us just sat back and watched the whole event passively, knowing that we would soon be praised and his problem would be resolved. He was one of those people who recognized that teaching is a great way to learn. His effort to explain the problem usually sharpened his reasoning to the point where the answer became clear. It is a method of learning that many of us emulate today.

Richard’s curiosity, and his desire to learn new things and then teach them to others made him extremely effective at writing textbooks. Among our faculty, Richard still holds two records, one for the most textbooks written, and the second for the most textbooks sold. The first of his five texts was Introduction to the Theory of Kinetic Equations (1969). He also wrote a text on electromagnetism, and two on kinetic theory. But by far his most important contribution was the certified best-seller Introductory Quantum Mechanics. This book, to date, has sold over 100,000 copies and been translated into at least 5 languages. It is likely that hundreds of thousands of students around the world have learned quantum mechanics from this textbook, which makes it one of the most influential quantum mechanics texts in the last 40 years. This book even made an appearance 10 minutes into the “Spider-Man 2” movie, where the nerdy star stumbles while rushing out of a classroom at Columbia and drops it so that the cover can be seen.

Having grown up in New York City, Richard was fascinated by the outdoors, and one of the first things he did upon moving to Ithaca was to buy a house with a yard. He proceeded to plant a lot of trees, which was charming when they were small, but over the years his
yard became an incredibly dense forest! He was always upbeat, and he and his wife Myra hosted many delightful faculty dinners at their house. He also hosted dinners with his graduate students – especially the ones that played chess. He portrayed an innocence about the small town life in Ithaca, but in fact he was totally at home here. He enjoyed horseback riding, which he did frequently in the Finger Lakes region. He was a classic Ivy League professor, appearing occasionally absent-minded as he focused on his scholarship, especially when seen walking to his car at the end of a winter day wrapped in a scarf, heavy overcoat and warm hat, but always keenly aware of what he was doing. He loved learning new things, especially new physics, and he loved writing books. His best scholarship is still at work, teaching thousands of young minds the beauty of quantum mechanics. His legacy will live for a long time.

David Hammer and Clifford Pollock
Arthur S. Lieberman

February 24, 1931 – July 9, 2016

Professor Emeritus Arthur S. Lieberman was born on February 24, 1931 in Brooklyn, New York. His parents were Dora and Sam Lieberman, a physician. He spent his childhood in New York City prior to coming to Cornell in 1948 for a BS in the department of Floriculture and Ornamental Horticulture, enriched by summer practice experience at the New York Botanical Gardens. Upon graduation in 1952, he taught at the Charlotte High School in Rochester, then entered the Navy Reserve, on patrol aboard the USS Hoist off the coast of Newfoundland. He regarded himself as “a poor free-hand artist” at that time but felt sure that pursuing a career as a landscape architect—a long held dream—would give him a better footing in life. Unfortunately, Cornell’s landscape architecture degree was in decline, so he returned for the Master of Science degree in Floriculture with a focus on landscape design and a minor in education. During that time, he met Margot Rosbasch and after a brief courtship, they married in June 1956. Their family grew to include three daughters: Laurie, Amy, and Karen. Upon receiving his degree, he joined the Cornell faculty as an assistant professor with an appointment in Cooperative Extension and moved up through the ranks to full Professor. Recognized as a pioneer in landscape ecology, Prof. Lieberman published his seminal work, Landscape Ecology, Theory and Application, with longtime colleague Zev Naveh in 1984. After retiring as Professor Emeritus, he and Margot moved to Israel, where he continued to support Cornell as the Resident Director of the Cornell Abroad Program in Israel, then as Cornell Abroad Faculty Representative in Israel from 1994-1996. He died on July 9, 2016.

During his early years of outreach, Art became inspired by Cornell’s role as a Land Grant University. Charged with conveying and interpreting the results of horticultural and vegetation science research findings to professional and lay audiences, he became aware of the ecological implications of his work as he interacted with communities on the application of the research to land management at a variety of scales of operation. His initial teaching and publications were devoted to conveying the insights afforded by research in this area.

Through this work, he became involved with landscape ecology. In a short unpublished memoir, he writes that he saw landscape ecology-based planning as a holistic and rational
system for resource determination and management. Under his leadership, the Cornell Tree Crops (Agroforestry) Research Project (CTCRP) initiated investigation of the use and management of marginal landscapes, such as abandoned farmlands, in the eastern US. He understood the issues within a global framework, and over time, his teaching evolved to focus on problem-solving methodologies at the local, regional, national and global levels, stressing rational, sustainable land-use for human and societal advantage. His emphasis on the application of ecological principles to large scale landscape development resulted in collaboration across departments in CALS: Landscape Architecture, Natural Resources, Agronomy, City and Regional Planning, Resource Information Laboratory, and Remote Sensing Lab. This was rare in the late 1970s and 1980s.

This growing work in landscape ecology-based land and resource planning, and the role of landscape ecology in scientific and professional training, led him to move to the faculty of the Landscape Architecture Program, teaching courses in regional planning. Cornell was a crucible for the new field of landscape ecology in the mid-1980s. Peter Marks had arrived in the Department of Natural Resources, Zev Naveh spent his sabbatical working with Art, and Gary Barrett arrived as a student excited to work with this group of scientists. The group was active in the conferences nationally and internationally that led to the formation of landscape ecology as a discipline. In 1984, Zev Naveh and Art Lieberman published Landscape Ecology: Theory and Application, which distinguished itself from other publications on the subject by its focus on theories and methods of application, particularly in the integration of human processes in landscape ecology.

As a colleague, Art was particularly solicitous and interested in the development of the research of the faculty. Peter Trowbridge recalls how Art would take time each week to stop by for conversations and to learn of the latest developments in Peter’s work. Art’s thoughtful sharing of newspaper clippings, journal articles and references would become legendary among faculty and students alike. Another particular love of Art’s was the Cornell campus itself. Although he had left the Floriculture and Ornamental Horticulture program, he sought out the gardens of the campus, taking breaks to enjoy the seasonal changes of the Minns Garden.

On retirement, Art and Margot moved to Haifa, Israel, where Art continued his role as an educator with Cornell Abroad, as well as lecturing in the University of Haifa Geography Department and the Department of Overseas Students Program. His attentiveness and support of the students was greatly appreciated. OSP alumna, Sarah Wolfe, writes: ‘Professor Lieberman’ played such a huge and influential role in my life. He introduced me to the beauty of ecology, wrote reference letters for scholarships and doctoral studies, and was my academic mentor for many years. The packages of newspaper clippings he sent were always so welcome.

During his retirement years, Professor Lieberman became involved in educational efforts in Israel to strengthen ecological and scientific understandings of the environment in the processes of planning, policy-making, and resource management in Israel. In 1993, he and Zev Naveh published an updated edition of Landscape Ecology: Theory and Application. Translations in Chinese and Spanish (with additions by leading scientists in Latin America) followed in 2002.

Professor Lieberman remained devoted to Cornell until the end of his life. He kept the Cornell landscape architecture faculty up to date on developments in landscape ecology through letters filled with newspaper and journal clippings. Cornell faculty coming to Israel were warmly welcomed by Art and Margot at their home and with tours and contacts with Israeli colleagues. Alumna Elissa Rosenberg spoke warmly of her visits with him.
during her lectureships at the Technion, and Kathryn Gleason particularly remembers their hospitality and walking tours during her field projects at nearby Caesarea Maritima.

Art Lieberman’s devotion to Cornell has been commemorated by the Landscape Architecture faculty with a bench in his memory in the Minns Gardens, placed there at a ceremony on September 23, 2016.

He is survived by his wife, Margot, his daughters Laurie Livshin, Amy (Yigal) Holzer, and Karen (David) Herbstman; and grandchildren Isaiah (Mirit) Livshin, Edan (Rony) Holzer, Yaniv Holzer, and Nadav Holzer, Jonathan Herbstman, and Michael Herbstman (currently a student at Cornell in engineering); and great-granddaughter Shira Livshin.

Written by Kathryn Gleason and Peter Trowbridge
On December 27, 2013, Professor Emeritus Simpson (Sam) Linke of Cornell University’s School of Electrical and Computer Engineering passed away in Ithaca at age 96.

Simpson (Sam) was born in Jellico, Tennessee on August 10, 1917. Intrigued by a chemistry set as a youngster, he chose chemical engineering as his career objective, when he entered the University of Tennessee in Knoxville. But after struggling through freshman chemistry in spite of great effort, and having worked as an electrician helper in the university’s Engineering Cooperative Program, he transferred study to electrical engineering and received the B.S.E.E. degree in 1941. He then spent four years during World War II in the U.S. Army Signal Corps as a Radar and Communications Officer, stationed in California and in Korea. In 1946, upon completion of his military service with the rank of captain, Sam enrolled in the School of Electrical Engineering at Cornell in the M.E.E. program. While a graduate student, he also served as an Instructor for service courses such as machine theory and electrical circuits. After receiving his degree in June 1949, he spent the summer at Brookhaven National Laboratory, where he
worked on advanced linear induction motors. That same year, Sam was appointed an Assistant Professor of Electrical Engineering. He was promoted to Associate Professor in 1953 and Full Professor in 1963. He earned the rank of Professor Emeritus in 1986 at his retirement after a long and distinguished Cornell career.

Sam devoted his career to the study and teaching of energy systems, but he also had a remarkably calm and thoughtful demeanor that, when combined with his jovial sense of humor, made him a trusted leader of programs. With the Office of Naval Research in the 1950s, he studied dielectric breakdown phenomena in high vacuum. About this same time, Sam became the Supervisor of the Cornell AC Power Network Calculator Facility, from which many contributions to the power industry in terms of electricity network loss-reduction and stability improvements were made. Sam spent his 1971-72 sabbatical in Washington, D. C. at the NSF (RANN Directorate). As Program Manager for Electronic Power Transmission and Control projects, he was responsible for funding some of the first electric-energy research sponsored by the U.S. government. In August 1973, he organized and chaired the Cornell International Symposium on the Hydrogen Economy. In the mid-1970s, Sam chaired the Cornell Workshop on the Major Issues of a National Energy Research and Development Program and published the summary report.

Sam was, in fact, a strong promoter of sustainable energy principles even before the field was given the now familiar name. Sam worked in many aspects of energy from high-energy relativistic electron beams at the Laboratory of Plasma Studies (for which he served as Assistant Director and Acting Director from 1968 until 1975) to enhancing efficiency, stability, and safety of electric power transmission and distribution systems with the goal to improving design and operation of the electric power grid. In the early to mid-1970s, Sam pioneered in researching and promoting the ideas of Wind Power plus both Hydrogen and Superconducting Magnetic energy storage. From 1975 up to his retirement, he was principal investigator on an NSF research program on Fast Control of HVDC Transmission Links for Power System Stability Augmentation. He also consulted with Brookhaven National Laboratory on
transmission-line issues relating to site selection of large power station facilities. Other consulting and sabbatical experiences included Philadelphia Electric Co., Oak Ridge National Laboratory, the New Mexico Public Service Commission, and Entek Research, Inc. His sponsored research included contracts from NSF, General Electric, ONR, AEC, and the Department of Energy.

Sam was a major contributor to the evolution of power systems research and educational programs at Cornell. In the 1940s, the program consisted mostly of studying ac and dc machinery, motors and generators. In the early 1950s, Sam began to introduce the study of ac power networks and energy systems into the curriculum. He offered some of the first courses in power transmission lines and networks, including the still vexing topic of transient stability. His work with the Cornell Power Network Calculator allowed him to introduce these modern concepts into the education of power system engineers from Cornell. The work of the Network Calculator research team, including several new and dynamic faculty members specializing in power networks, introduced concepts of load-flow and transient-stability control. The Network Calculator was upgraded to a full computer-supported simulation system within the Kettering Power Systems Laboratory that allowed students to perform the same calculations and observations as would be seen on the job in an actual power system. In fact, the power systems of many countries in the world continue to benefit from work of engineers who were trained at Cornell by Professor Linke and the other new energy faculty of the 1960s and beyond.

Sam also notably served the engineering profession through his professional service activities throughout his long career. These included membership in professional honorary societies, such as: Life Senior Member of IEEE since 1983; Eta Kappa Nu; Society of Sigma Xi (President of CU Chapter, 1979-80), member of CIGRE from 1964-1988, and in 1988, he was elected as Attwood Associate of the U.S. National Committee.

Sam was well known as a meticulous and precise writer and he utilized this skill in many ways over his career. He often served to produce the proceedings of symposia and various technical reports.
In his retirement, he served as the coordinator of a number of accreditation reviews for the School by the Accreditation Board for Engineering and Technology. His precision in data collection and his manner of condensing and summarizing information so that it could easily be understood by others were phenomenal. He served for years as the faculty advisor (and uncredited editor) of the Cornell Engineer magazine. Sam was also the founding editor of ECE’s alumni publication Connections, overseeing its publication from 1992 to 2005.

Of special note was his involvement with the Centennial of the School of Electrical and Computer Engineering celebration and his histories of the School, updated and published several times over his career. The Centennial’s Herculean effort involved coordinating six seminars around the nation and producing six volumes on the “Future Directions in Electrical Engineering,” in which faculty researchers looked into their crystal balls and predicted the future in the various major areas of research of that era. Sam also took on the responsibility of having a 6-inch tall hologram made of an historic piece of communications equipment owned by the School of ECE and the College of Engineering: Samuel F. B. Morse’s original telegraph receiver. This is the instrument that received and delivered Morse’s famous message, “What hath God wrought!,” sent on May 24, 1844 from Washington, D. C. to Baltimore, and that opened this pioneering transmission line. Sam had to come up with a way to create the hologram without shipping the actual key out to Boston for the holographic process. The actual receiver was far too valuable a piece of communications history to chance any damage, loss, or theft. He came up with a way to make a visibly (almost) exact copy of the original and hence the hologram was made safely yet accurately.

No discussion of Sam’s life and career would be complete without a comment on his love of teaching and his selfless giving of his time and advice as a mentor and coach to many students over the years. Sam was the ultimate in generating well-prepared and delivered lectures. He was gifted in being able to foresee potential areas of difficulty with new material and provide means to assure mastery of concepts. Sam served for decades as a devoted and knowledgeable
faculty advisor to generations of Cornell undergraduates and Master of Engineering students. He sponsored many research and design projects for students who took his courses and wanted to pursue the material toward novel practical applications. For years after his retirement, Sam was one of the most sought-after professors during alumni reunion events. It seemed that many former students had a story about some way that Professor Linke had personally helped them over a tough period in their studies or gave them some excellent career advice that they believed helped them become successful beyond school in the real world.

One formal tribute that Sam received was from a former student, Mark Adamiak, who received the 2008 GE Edison Award for his work in developing GE products to ensure stable power grids around the world. That award included a component to support power systems education allocated at the winner’s discretion. Mark chose to donate half of his grant to Cornell to create a collection of premier lectures, the Sam Linke Lectures on Power Energy, to honor his special mentor, Professor Sam Linke.

In 1999, Sam joined CRVIS, and volunteered together with fellow Emeritus Professor Charles Wharton, who had developed an idea that students in elementary school are capable of understanding and appreciating science if simple and illustrative experiments could be brought down to the proper level. For several years, they happily spent time in a local elementary schools-teaching about the basics of science, math, and engineering by demonstrating the principles of science and engineering. Talking about this experience, Sam related that it was actually more challenging than presenting a high-level lecture on an advanced technical notion. In college, students are expected to take the time to do extra readings and study to understand their lectures each day. However, with the youngsters in elementary school, you need to get the point across simply, and with a sense of excitement, or you will lose the class’s attention. A wonderful experience for both students and teachers, it took two special faculty members working together to excel in communicating detailed ideas to younger students.
Sam is survived by his loving and devoted family, his wife of 67 years, Esther, and daughters Martha and Laura.

Sam Linke was the epitome of everything outstanding one would hope to find in a faculty member. He was a talented and creative researcher, an innovative and tireless teacher, and a supportive and encouraging mentor to students, staff, and fellow faculty members alike. His good humor, respectful manner with others, and his love for students and their love for him are deeply missed.

Clifford Pollock and John Belina
Raphael Littauer, Professor Emeritus of Physics, died peacefully on October 19, 2009. Born in Leipzig Germany in 1925, he was fortunate to be able to leave Germany in the summer of 1939, shortly before the outbreak of World War II. He spent the war years in England, where he received his doctorate in physics from Cambridge University. He came to Cornell to join the electron accelerator program of the Laboratory of Nuclear Studies in 1950.

In 1955, after a short intermediate stay working on particle accelerators at the General Electric Research Laboratory in Schenectady, he returned to Cornell as Research Associate Professor of Physics.

Shortly after returning to Cornell, Raphael became the reigning expert on the electronics aspects of accelerator technology. Not only did he manage accelerator operations and continually upgrade the control system, he also devised the electronic circuits needed to support experiments being done with the accelerator. As one example of his ingenuity, he invented what was known as the “kick-sorter,” a pin-ball type apparatus that measured the distribution of energies of charged particles passing through a particle detector.

Economy and efficiency were his watchwords in the devising of complete electronic systems, as well as in the many ingenious circuits that he designed. When LNS accelerator operations moved to the new Wilson Laboratory in 1967, to give more room for a new synchrotron, these principles led him to create the first distributed control system for an accelerator – similar versions of which are now common practice around the world. Another product of his vision was the introduction of special orbits for counter-circulating beams, a technique that permitted more intense beams. This invention has been subsequently adopted around the world.

For his many achievements in accelerator physics, Raphael was awarded the Wilson Prize of the American Physical Society in 1995.
A key aspect of his electronics “guruship” was teaching the art of electronics to successive generations of students. He had a unique way of presenting the concepts of circuit design, and wrote extensive notes on the subject, utilizing his particular notations scheme to promote efficient interpretation of circuit diagrams. These notes ultimately appeared in the form of a widely used book, Pulse Electronics, published by McGraw Hill in 1965.

Research and faculty colleagues, as well as students, quickly became aware of Raphael’s extraordinary intellectual firepower. He was quick, deep and incisive. One always needed to run to catch up. After becoming used to these characteristics, those exposed to them learned to appreciate the experience as a formative part of their lives.

Raphael became Professor of Physics in 1965. From this base, in addition to his research achievements, he formed a parallel career as a never-ending source of ideas, apparatus and textual materials to improve the quality of physics teaching at Cornell. A notable example of application of his mastery of electronics was his invention in 1971 of an electronics-based student response system. In a large lecture group, the system made it possible to gauge student understanding of the subject matter of the moment. Descendants of that pedagogical development, now known as student-response “clickers,” are used at colleges and universities around the country. In keeping with his instincts to get the job done immediately, Raphael engaged his children as helpers in the wiring and installation of the original system in a Rockefeller Hall lecture room.

New laboratory experiments, probing lecture notes, incisive ways to facilitate physics learning poured out in a steady stream during his years of teaching at Cornell. During the last few years, he brought his talents to bear on the introductory physics course taken by many students majoring in biological sciences and other non-physics, non-engineering disciplines. His mastery of computer applications and inventiveness in generating on-line instructional materials formed important learning tools.

While Raphael was a brilliant scientist and teacher, he was also an accomplished musician who played piano, cello and recorder. He enjoyed photography, done in the course of extensive world travels and “birding” trips with his wife, Axéandra. He spoke three languages fluently, and was conversant in two others. He enjoyed sports such as squash, tennis, snow and water skiing.

He also had a strong social conscience. Outraged by the U. S. involvement in the Vietnam War, he was the lead author and editor of “The Air War in Indochina,” a quantitative study of the effects of bombing in Southeast Asia. He was especially disappointed that he was not mentioned in President Nixon’s list of enemies.

In the midst of his diverse personal activities, Raphael also served as chair of the Department of Physics at Cornell in the late 1970’s.

All who knew Raphael mourn the loss of his warmth, his wit, his keen intelligence and the never-ending expression of new ideas.

Donald Holcomb, Chairperson; Ahren Sadoff, Maury Tigner
Robert (Bob) Theodore Lorenzen was born on February 16, 1917 in New Leipzig, North Dakota, on a homestead located on the flat, windswept prairie, to pioneer settlers Theodore and Hattie Marek Lorenzen. He was reared on their expanding family crop and livestock farm, assisted his father in all aspects of the operation, and graduated from New Leipzig High School in 1935.

In 1936, he joined the Civilian Conservation Corps (CCC) as a crew leader in construction and maintenance, where he served until 1939 when he entered college and received a B.S. in Agricultural Engineering from North Dakota State College (now North Dakota State University), Fargo in 1943. From 1943 to 1946, he served in the US Army as a First Lieutenant in the European Theater in World War II and was awarded two Purple Hearts and cluster for combat wounds he received in 1944, as well as the Presidential Unit Citation and the French Fourragere.

Following his discharge, he was an engineer for the University of Wisconsin’s research farms from 1946 to 1954, where he was responsible for the planning, design, drafting and construction supervision of administrative and service buildings for the University Branch Experiment Stations, as well as engineering and maintenance of existing structures. Bob was efficient and supremely organized, and succeeded in earning a BS in Civil Engineering from the University of Wisconsin, Madison in 1954, and an MS in Agricultural Engineering from the University of California, Davis in 1957, where he was a research and teaching assistant. He was an Assistant Professor at Colorado State University from 1956 to 1959, and then joined the faculty of the Department of Agricultural Engineering at Cornell University as an Assistant Professor. He was appointed Associate Professor in 1965, Professor in 1982, and then Professor Emeritus upon his retirement in 1982. He was a registered professional engineer in the State of New York, and served on the faculty for twenty-three years.

Bob’s primary professional interests arose from his early vocational experience in farming and construction. He was especially interested in farmstead production and storage systems, with emphasis on structural integrity, labor efficiency and energy conservation. He participated in the design and construction supervision of farm-type research and demonstration facilities, and
consulted on a wide variety of agricultural and other structural designs and problems, including many as an investigator and expert witness. He also held a US Patent for a mechanical egg counter for cage laying systems.

Bob was active in teaching, research and extension. His principal courses related to farmstead production systems and their environments, and agricultural structures design with an emphasis on utilization of wood as the structural material. He was a meticulous, supremely organized recorder – one look at his lecture or research notes was convincing evidence, and he carried that trait into the classroom and onto the blackboard! His extension interests were wide ranging, including projects such as truss design for suspended cage layer systems, thermal characteristics of log walls, and prevention of collapse of farm buildings and storage structures from natural forces. Similarly, his research interests lay in moisture control and thermal insulation in agricultural buildings, safe design of agricultural production facilities, and fastener systems for use in wood structural members. He loved working with wood! He “got the word out” beyond the classroom by authoring print and radio articles for the Cooperative Extension County News Service, and wrote dozens of articles for the department’s publication, the Ag Engineer’s Notebook, that was disseminated to a broad extension audience, and authored some forty research publications and reports. He also was a recipient of a Blue Ribbon Award for Publications from the American Society of Agricultural Engineers (ASAE).

His interests and achievements were also recognized via membership in Alpha Zeta, Chi Epsilon, Scabbard and Blade, Blue Key, and Sigma Xi. He maintained professional contact with his peers through membership and direct participation in the American Society of Agricultural Engineers (now ASABE; a Life Member), National Society of Professional Engineers (NSPE), American Society of Heating, Refrigerating and Air Conditioning Engineers (ASHRAE), American Society for Testing and Materials (ASTM; now ASTM International), Society of Wood Science and Technology (SWST), Forest Products Research Society (FPRS), and the Council for Agricultural Science and Technology (CAST).

Bob certainly wasn’t all work and no play; he had interests in poetry, photography, inventing, travelling, flying small planes, and, especially, dancing – ballroom, square and line dancing. In 1954, he married Mary Kathleen Junkman, a teacher, who became his loving wife and dance partner for thirty-eight years, until her death in 1992 from complications due to diabetes. They especially loved square dances and would travel far and wide from their home near the Cornell campus in Varna, New York to attend them. And it was the love of dancing that brought Bob his next love, Margaret Thacher Brownell, a widow whom he had later met at square dances.

Margaret was a retired nurse and author of children’s books, both aspects of her skills that would add important meaning to Bob’s life following their marriage in 1993, and operated a bed and breakfast in Dryden, New York. Their relationship blossomed, and joyfully peaked when they visited their family origins in 1996 – England for Margaret, and Germany for Bob. Eventually, Bob developed dementia and Margaret’s skill as a nurse was needed daily to watch over him. In 2007 Margaret published a book about his life, titled A Life to Remember, a loving tribute to her dancing partner of eighteen years.
Bob was a past member of the St. Luke Lutheran Church and was a current member of The First Presbyterian Church of Dryden at the time of his death. He is survived by his beloved wife, Margaret; stepchildren Kathlene (David) Gross, Gary (Judith) Brownell and William Brownell; eight step-grandchildren, four step-great grandchildren, and several nieces and nephews.

To know Bob was to know a friendly, quiet man. He had a broad smile for everyone, accented by his sparkling eyes. Borrowing one of his favorite exclamations, “Yep!” he was a great friend to love and remember.

Ronald B. Furry, Chairperson; Everett D. Markwardt, Norman R. Scott
Theodore J. Lowi

July 9, 1931 – February 7, 2017

Theodore J. Lowi, one of the social sciences’ most towering intellects of the 20th century and a renowned teacher for generations of Cornell students, died on February 7 at the age of 85. Lowi taught at Cornell for a total of 49 years, first joining the faculty as an instructor in 1959, leaving in 1965 for a position at the University of Chicago, and returning in 1972 to become the John L. Senior Professor of American Institutions. He became the Emeritus John L. Senior Professor Emeritus in 2015.

Lowi’s approach to political science lay at the nexus between American political institutions, political history, and public policy, yielding insights that remain prescient in light of recent developments. In his classic book, *The End of Liberalism* (1969), he argued that in the United States the rule of law and the power of representative government were being displaced by the ascendant interest group liberalism. It enabled organized private interests, particularly business groups, to benefit from the expanding administrative state, to the detriment of the unorganized. As the public interest suffered as a result, he explained, “cynicism unavoidably curdles into distrust.”

Lowi considered Congress to be “the first branch,” the most democratic and representative, and he viewed the aggrandizement of the executive branch—at Congress’s expense—with great concern. In his book, *The Personal President: Power Invested, Promise Unfulfilled* (1985), he argued that several factors in combination—citizens’ growing expectations of government services, the weakening of the role of grassroots parties in the campaigns, and the increased capacity of modern presidents to use technology to communicate directly with the public—were giving rise to a “plebiscitary” character to the office, as presidents generated ever-greater expectations among the electorate. Yet such hopes were inevitably dashed, as the limits of the office in the realm of domestic policy meant that presidents predictably failed to deliver on the scale of their promises. They would turn instead to their greater powers as “commander-in-chief,” engaging in high-risk overseas adventurism. Their approval ratings would in time plummet, and the public’s disillusionment with government generally would deepen.
In two of his most famous and oft-cited essays (“American Business, Public Policy, Case-Studies, and Political Theory,” *World Politics*, 1964, and “Four Systems of Policy, Politics, and Choice,” *Public Administration Review*, 1972), he put public policy front-and-center as the topic that could enable us to understand politics generally. It launched his hallmark “arenas of power” framework, based on the idea that “a political relationship is determined by the type of policy at stake, so that for every type of policy there is likely to be a distinctive type of political relationship.” These “types” were not categorized in the typical fashion of emphasizing the substantive topic policies addressed but rather they were sorted analytically according to the relationship they establish between society and government, leading to the distinction between distributive, regulatory, and redistributive policies. As Lowi explained, “Each arena tends to develop its own characteristic political structure, political process, elites, and group relations.”

Lowi called for scholarship that makes politics its primary focus. In his formulation, this meant studying power—not simply as it is possessed by individuals or groups, but rather as it emanates from “the state,” through formal rules and procedures, resources offered, and the authority through which decisions are made. He considered public policy to epitomize “government-in-action,” showcasing political relationships that reveal how power is distributed and navigated. Troubled by the growing divide in political science between empirical studies and theoretical work, he advocated simultaneous attention to both as the most promising way to further understanding of politics. The challenge for the scholar, as he saw it, is to be able to step back from a case or set of cases, studied in an in-depth manner, and to analyze the broader patterns and relationships at work, those which illuminate how power operates more generally.

Lowi’s scholarship bears an enduring influence on the study of political science. He helped spur the development of historical institutionalism, in particular the approach to studying the United States known as “American political development.” His ideas also gave rise to the theory of “policy feedback,” which is utilized by numerous contemporary scholars of both American and comparative politics to examine how policies created at an earlier point in time shape subsequent politics by influencing the activity and goals of ordinary citizens, lawmakers and interest groups.

Lowi became well known on campus for his riveting lectures in the introductory undergraduate course in American government and politics, which he taught almost continually throughout his years on the faculty. He delivered them with his characteristic southern drawl, and the zeal, and intensity of an evangelical preacher. The course attracted a packed house, in some years enrolling up to 500 students. His charismatic presence combined with the clarity, complexity, and originality of his ideas more than filled the cavernous Bailey Hall.

His belief that undergraduates could gain from exposure to the policymaking process, witnessed firsthand in the nation’s capital, prompted him to develop the idea of the Cornell-in-Washington program, which commenced in 1980 and continues to this day. He also played a leadership role in founding the Cornell Institute of Public Affairs (CIPA) in the 1980s, and served as one of the program’s core faculty.

Lowi mentored generations of graduate students. He encouraged them with his southern colloquialisms and tips such as, “Remember it’s not a book; it’s a dissertation;” and “Don’t get it ‘right’, get it ‘written.’” He served as an early and dedicated mentor to women and to people of color, and was honored in 1996 with the award for an “Outstanding Mentor of Women in Political Science,” given by the Women’s Caucus for Political Science.

Lowi was born and grew up in Gadsden, Alabama. His father, Alvin Rosenbaum Lowi, founded a chemical company and his mother, Janice Haas, taught piano. The family, which included four
additional children, attended the local Jewish temple. He began his studies as an undergraduate at Tulane University, but had to drop out when he became ill; he subsequently attended Michigan State on a music scholarship, specializing in the oboe and graduating in 1954. He earned the Ph.D. at Yale University in 1961.

Lowi’s star rose quickly. The American Political Science Association named him the top political scientist in 1978. He became the organization’s president in 1991, and served as president of the International Political Science Association from 1997-2000. He received numerous honors throughout his career, ranging from a Guggenheim Fellowship in 1967-68; to the Richard Neustadt Award for the best book on the presidency in 1985, for his book The Personal President; to the Harold Lasswell Award of the Policy Studies Organization in 1986 for substantive contribution to the study of public policy. Besides his numerous scholarly books and articles, he became the author of a Norton textbook on American government beginning in 1976, with several co-authors joining in over the years on subsequent iterations; the current version remains widely adopted annually.

Lowi was married to the former Angele Marie Daniel. The couple had two children, Anna and Jason. They lived not far from campus. Lowi would sometimes run from home to the Arts Quad, stopping repeatedly along the way to engage in spirited conversation with colleagues and students.

When Lowi completed his year as president of the American Political Science Association, he delivered an address in which he shared “the pains of discovery” gleaned from his “pilgrimage” of listening in on the discipline in that role. “At the end of my pilgrimage, I have come to the conclusion that among the sins of omission of modern political science, the greatest of all has been the omission of passion. There are no qualifications for membership in the APSA, but if I had the power to establish such standards, they would be that a member should love politics, love a good constitution, take joy in exploring the relation between the two, and be prepared to lose some domestic and even some foreign policy battles to keep alive a positive relation between the two. …I speak for the pleasure of finding a pattern, the inspiration of a well-rounded argument, the satisfaction in having made a good guess about what makes democracy work and a good stab at improving the prospect of rationality in human behavior.”

Theodore Lowi’s ideas and the force of his character inspired students of politics at Cornell, throughout the discipline of political science, and well beyond. His scholarship, teaching and mentorship were consistently characterized by an ability to analyze politics from an original point of view, one with a sharply critical edge that deeply questioned assumptions and was ever mindful of the public interest. That intellectual sharpness was embodied within a personality of tremendous warmth, vibrancy, and verve. A stalwart critic, an ever-creative thinker, a force of nature emanating energy and joy—this was Ted Lowi as scholar, teacher, mentor, and colleague.

Lowi’s wife, Angele, predeceased him by two years. He is survived by his children, as well as his siblings Alvin Jr., Bertram, Jan Horn, and Betty Baer.

Submitted by Suzanne Mettler (Chair), Richard Bensel, Isaac Kramnick and Elizabeth Sanders
David Corbin Ludington was born on March 22, 1934 to Ralph Corbin and Gertrude Fenner Ludington in Holley, New York, and raised on a fruit farm. Dave, as he was affectionately called, received his BS (1956) and MS (1959) degrees in Agricultural Engineering from Cornell University, and joined the Department of Agricultural Engineering faculty as an Assistant Professor in 1959. He was promoted to Associate Professor in 1964 and Professor in 1982. He received his Ph.D. (1968) in Agricultural and Sanitary Engineering from Purdue University with support of a National Science Foundation Science Faculty Fellowship. Dave was named Professor Emeritus of Biological and Environmental Engineering upon his retirement in 1995.

During his tenure, Dave performed with innovation, quiet leadership and notable effectiveness in all three functions of the department’s mission: teaching, research and extension. He was appointed Department Extension Leader in 1992 at a time when the Department’s Extension program was making a significant shift from specialist centered to program centered outreach. During his career, he served on the graduate committees of over three dozen students. He enjoyed the close interaction between learning and personal development in a very wide range of technical studies. His investigations ranged from generation of electrical energy from rejected engine heat, to the handling, storage and processing of dairy and poultry wastes, to energy flows and applications of electrical energy in farming with emphasis on dairy systems. Conservation, efficiency and safe use of energy were his primary guiding principles. He authored or co-authored over 80 technical papers, articles and reports on these and related topics.

In 1989 Dave formed the Cornell Agricultural Energy Program (CAEP) to encourage the efficient use of electrical energy through innovative engineering design, conservation and load management. Electric power companies and other agencies were interested and willing sponsors of his work. He demonstrated effective energy use with its concomitant savings for milk harvesting and cooling, farm production system ventilation system selection and operation, stray voltage elimination, lighting control, water heating, and other on-farm applications. A representative set of operating dairy farms were closely monitored and utilized for demonstration purposes. In 1992, with F. Guo, R.A. Pellerin and D. J. Aneshansley, he received a patent for a
Two-Level Vacuum System Controller with Adjustable Speed Drive that reduced, by more than 50%, the energy used by vacuum pumps for milking dairy cows. He later was involved in the commercialization of this equipment. This invention has been adopted both nationally and internationally, providing a significant reduction in energy demands, noise levels associated with vacuum pumps and cost for milking. In another energy saving effort, Dave was also Co-director of the Small Business Energy Efficiency Program from 1989 to 1992. Dave had notable success in obtaining substantial research project funding from a variety of sponsors, principally those that dealt with energy. Never one to remain idle, following retirement he formed the DLTech Inc. consulting firm to support operational and technological improvements for dairy farms. He was active in this business right up to his untimely death.

Dave was recognized by the students as one of the top ten members of the Engineering Faculty as an outstanding teacher, and also received the Cornell ASAE Student Branch Outstanding Faculty Award. Recognized as a compassionate and effective undergraduate advisor, Dave was much beloved by his advisees. During his teaching career, he taught thirteen courses, five of which he originated. He was an early leader in recognizing the importance of providing instruction in environmental problems and their remediation. He participated in thirteen College of Agriculture and Life Science and College of Engineering committees, and chaired the Department’s Committee on Undergraduate Teaching from 1975 -79, and again in 1984 -89. Dave was always willing to provide time and energy to department, college and university endeavors, and did a superlative job.

Dave was an active member of the American Society of Agricultural Engineers (ASAE), participated on several of its technical committees, and chaired the Program Committee of the ASAE North Atlantic Region’s Executive Board. In 1984, he received an Extension Educational Aids Blue Ribbon Award from ASAE. He was also a member of the American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE), and served as the ASAE ASHRAE Liaison Committee Chairman. He was elected to membership in Phi Kappa Phi Sigma Xi, and Alpha Epsilon, and was a member of the American Society for Engineering Education (ASEE). In 1996, he received the National Food and Energy Council Distinguished Service Award.

Dave is survived by his beloved wife of 54 years, Aletta (Letty) Manchester Ludington (Cornell 1957), his son Paul (Teresa) Ludington, daughters Deborah (James) Stocker and Anne (Gene) Mage, eight grandchildren and one great grandchild. He was a devoted and active parishioner of the Bethel Grove Bible Church, holding many positions of responsibility as well as devoting time to the ministry of his church. Dave was an extraordinary and generous individual and will be sorely missed by all.

Ronald B. Furry, Chairperson; Daniel J. Aneshansley, Gerald E. Rehkugler
John Leask Lumley, the Willis H. Carrier Professor of Mechanical and Aerospace Engineering at Cornell University, died in Ithaca on May 30, 2015 of a brain tumor. It is widely believed that his contributions to fluid mechanical turbulence were among the most significant in the second half of the twentieth century.

John Lumley was born November 4, 1930 in Detroit, Michigan. His parents were immigrants, his father from England and his mother from Scotland. John’s father, Charles Swain Lumley was an architectural engineer, and instilled in him a deep appreciation of good design. His mother, Jane Leask Lumley, was the likely source of his extensive repertoire of British aphorisms with which he occasionally sprinkled his conversations.

John enrolled in Harvard University in 1948, and received an A.B. in engineering sciences and applied physics in 1952. His interest in statistical physics was piqued by a course taught by Stanislaw Ulam, who was visiting Harvard. He chose to attend the Johns Hopkins University for graduate work, primarily (or so he said) based upon the attractiveness of their recruiting brochures. After receiving a M.S.E. in mechanical engineering in 1954, he switched to the aeronautical engineering program to work with Stanley Corrsin on turbulence, earning his Ph.D. in aeronautics in 1957. After two years as a postdoctoral fellow with Corrsin, he joined the Pennsylvania State University initially as a Research Professor at the Garfield Water Tunnel of the Applied Research Laboratory, and then as a professor in aeronautics. By age 44, he was appointed Evan Pugh Professor of Aerospace Engineering, the youngest person to hold this title. In 1977, he accepted an offer from Cornell as the Willis H. Carrier Professor of Mechanical and Aerospace Engineering. He thrived at Cornell, and built a turbulence group that became recognized worldwide.

His thesis advisor was a prominent experimentalist, and John’s first research activities upon joining Corrsin’s group were in the laboratory. That apparently did not go as well as hoped, and he moved to a theoretical project. That did go well, and he had found his personal scientific
niche as a theoretician. That said, he was always well versed in experiment, wrote papers on
instrumentation and experimental methods, and many of the 34 or so Ph.D. candidates that he
supervised at Penn State and later at Cornell wrote theses on experimental topics.

While at Harvard, John met Jane French, a student at Radcliffe. They married while John was a
graduate student and their three children were born in Baltimore.

John’s own work covered many areas, from the fundamental physics and the mathematical
theory of turbulence, to the very practical, like his design of very quiet water tunnels for testing
full scale torpedoes. He was an expert on undersea warfare, in which turbulence plays a central
role, and he was involved in this work throughout his tenure at Penn State. The scope of his
work was remarkably broad, ranging from turbulence modeling (he insisted on models that
obeyed the same invariance properties as the physics), to incisive experiments, to computation.
He wrote about environmental flows, technological flows, drag reduction, and buoyant plumes,
among other applications. In a seminal paper presented at the 1967 Moscow conference,
“Atmospheric Turbulence and Radio Wave Propagation,” he showed that a particular series
representation of any turbulent flow, a “proper orthogonal decomposition,” could be found. For
a given number of terms, this kind of series captures more of the energy of the flow than a
Fourier or any other series, and in this sense, is an optimal representation. Each term can be
thought of as representing a “structure” in the turbulence, and in this way he provided a precise
definition of what had been a loose notion of the coherent features observed in turbulent flows.
This paper appeared in an obscure publication, and it took some time to become widely known.
Proper orthogonal decompositions of turbulent flows has since developed into a cottage industry,
and a standard method for understanding coherent structures.

He wrote six books: Structure of Atmospheric Turbulence, with H. Panofsky; Statistical Tools in
Turbulence; A First Course in Turbulence, with H. Tennekes; Engines: An Introduction;
Turbulence, Coherent Structures, Dynamical Systems and Symmetry, with P. Holmes and G.
Berkooz; and A Still Life with Cars: An Automotive Memoir and he edited several more. He also
wrote 229 scientific papers, and produced and performed in two films in the well-known
National Science Foundation series on fluid dynamics. In addition to his books and papers, he
was active in the scientific community in numerous ways, including memberships and
chairmanships of many national and international committees, editorial duties for several
journals, including over 30 years with Annual Reviews of Fluid Mechanics, nineteen years of
which he was Co-Editor or Editor. His impact on the field was impressive and lasting.

During the cold war, Soviet scientists had developed turbulence theory and experiment further
than their counterparts in the West. John brought their advances to the attention of Western
researchers first by editing English translations of the important two volume treatise Statistical
Fluid Mechanics: Mechanics of Turbulence, by A.S. Monin and A.M. Yaglom. These had to be
smuggled out of the Soviet Union. He also edited the translation of the book Variability of the
Oceans, by Monin, Kamenkovich, and Kort. In addition, for many years he edited the cover-to-
cover English translations of Izvestiya: Atmospheric and Oceanic Physics, a transaction series of
the Soviet Academy of Sciences.
He made several trips behind the iron curtain, and got to know the most prominent and productive Soviet scientists working in turbulence. His work had caught their attention starting with his 1964 book with Panofsky, *Structure of Atmospheric Turbulence*. This was recognized as an important contribution and was translated into Russian by Monin.

Among the most prominent of the many honors John received were election to the National Academy of Engineering and the American Academy of Arts and Sciences; he was a Fellow of the American Physical Society and Fellow of the American Academy of Mechanics; he was awarded the Timoshenko Medal of the American Society of Mechanical Engineers; the Fluid and Plasmadynamics Award of the American Institute of Aeronautics and Astronautics, and the Fluid Dynamics Prize of the American Physical Society. He also received honorary doctorates from the University of Poitiers and the Ecole Central d’ Lyon. He was especially proud of these.

John developed a love for automobiles as a small child that stayed with him for his lifetime. He attended a preparatory school in Detroit together with children of auto company executives. In addition to a fine academic curriculum, the school also offered shop courses, including ones particular to the automobile industry, which he appreciated and in which he excelled. Throughout his life, his avocation was the repair of family cars – mostly his family’s small fleet of Volkswagen Beetles - and the restoration of classic cars. The six classic cars he restored ranged from about 50 to 80 years old. He was a self-taught craftsman, rebuilding cars that arrived at “Lumley’s Good Enough Garage” in poor condition, and on one occasion, in boxes. He did all aspects of the restorations himself, including all mechanical work, body work, painting, and the fabrication of the interior, even the sewing of the leather upholstery and reconstruction of the interior wood veneer. Some of this is captured in his memoir written after retirement, *Still Life with Cars: An Automotive Memoir* (McFarland & Com 2005). He had an expert knowledge of the history of the automobile, and enjoyed talking about it, and especially about the engineering solutions to various subsystems that the designers adopted, some of which he admired, and some not.

His curiosity and memory were remarkable, as was the facility for language so evident in his writings. Together with his love of reading and sense of humor, these characteristics made conversation with him entertaining and rewarding. Despite this, he was not at ease with those he did not know well, and could seem reticent in their company. While he had strong opinions about research, and rapidly arrived at theories for controversial questions, he was always willing (though not always happy) to abandon a pet theory if experiment proved it untenable. On many occasions, he talked about theory and theoreticians. For example, on the occasion of receiving the American Physical Society Fluid Dynamics Prize, he wrote (one would expect with tongue in cheek) of how experimentalists and practical engineers regard theoreticians with alarm. “It does not help that any theoretician worth his salt can come up with several contradictory theories a day. He had a beautiful theory to explain yesterday’s data, but this morning it seems that those data are wrong; this afternoon he has a new theory to explain the new data. Who can trust a man like that?”

Although he was not a natural classroom teacher, his books and films provide a lasting testament to his role as an educator. His graduate students, and the many others whose careers
promoted, write of their deep appreciation of his influence. He taught the research method by example: few spoken words, many written words communicated by handwritten notes.

John and Jane were gourmets, which no doubt was why John preferred France as the destination for his sabbatical leaves. Jane taught in the School of Hotel Administration at Cornell, and was a restaurant critic for *Distinguished Restaurants of North America*. Both John and Jane loved to cook, and hosted many delightful dinner parties at their home.

John was predeceased by his wife, Jane Lumley (nee French). He is survived by his children, Katherine Leask Lumley-Sapanski, Jennifer French Lumley and John Christopher Lumley, and five grandchildren.

*Sidney Leibovich and Zellman Warhaft*
Walter R. Lynn, Professor of Civil and Environmental Engineering at Cornell University, died on Monday June 6 at the age of 82. Since retiring from teaching in 1998, he maintained an active professional life, including serving as the University’s Ombudsman 1999-2011.

Walter will be best-remembered as the pioneer who in 1961 brought systems-techniques, aided by emerging computer capabilities, to Cornell for the framing and analysis of solutions for many civil engineering problems, particularly those dealing with water supply, water treatment and later on road environmental and public health concerns. In 1972, as founder and head of the Cornell University Center for Environmental Quality Management (1966-76), he coined the phrase, “sustainability”, in assembling a multi-disciplinary research team of engineers, chemists, biologists, economists, lawyers and mathematicians to attempt to define and organize the way we think about society’s environmental problems in meaningful ways that recognize human aspirations and proclivities.

Walter served in the U.S. Army in Korea as a sergeant (1946-48). He earned his B.S. in Civil Engineering at the University of Miami in 1950 and began his professional career managing a sewage-treatment plant in Miami, Florida. While there he learned to water-ski, and he also managed surveying crews in the Everglades before moving to Chapel Hill to earn an M.S. in Sanitary Engineering at the University of North Carolina (1954). He returned to the University of Miami as an Assistant Professor, and while teaching there, he met and married Barbara Campbell. Subsequently, Professor Abe Charnes at Northwestern University ignited Walter’s enthusiasm for using systems tools in forging meaningful and longer-lasting engineering solutions, and Walter earned his Ph.D. under Professor Charnes at Northwestern in 1963.

Walter joined the Cornell faculty as an Associate Professor of Sanitary Engineering in 1961. Early on, he held a joint appointment at the Cornell University Medical College in New York City where he taught courses on systems methods to physicians and where he worked on modeling epidemiology to understand the interface between human biological and civil-engineered systems. After becoming a Full Professor in 1964, he served in many academic administrative positions, as Director of the School of Civil and Environmental Engineering
Walter Lynn, (1970-78), Director of the Center for the Environment (1996-97) and Director of the multi-disciplinary program on Science, Technology and Society (1980-88) where he contributed to its establishment as an academic department in the College of Arts and Sciences.

He was elected by the faculty as a trustee of Cornell University (1980-85), and he later served as the Dean of the Faculty (1988-93). He was elected Professor Emeritus in 1998. At one of his many retirement “fests”, Walter’s own academic legacy was highlighted by the large number of Ph.D. students who had been supervised by just two of his own former Ph.D. students, Professor Charles Revelle (deceased) at Johns Hopkins University and Professor D. “Pete” Loucks at Cornell who Walter recruited from Yale while both were sitting on a raft while visiting a camp in Vermont. One of Walter’s proudest accomplishments was helping to facilitate the establishment of the Weiss Fellowships that are awarded annually for innovation and excellence in undergraduate teaching at Cornell.

Walter served on a large number of National Academy Panels and working groups, including one beginning in 1976 to study the regionalization of the Washington, DC water supply system, now successfully implemented. He was appointed Chairman of the New York State Water Resources Planning Council in 1985 following a series of droughts in 1964-66 and again in 1984. As water “czar”, Walter had the absolute authority to declare a drought-emergency in NYC, a tremendous responsibility that soon became opaque to subsequent Governors after the return of normal rainfall levels. This required Walter to remind each new Governor that he held this awesome responsibility, were they pleased to re-appoint him. They did.

He served as Chairman of the U.S. National Committee for the Decade for Natural Disaster Reduction in 1990 and Chairman of the Board on Natural Disasters (1992-96) for the National Research Council. The irony of subsequent events and the loss of institutional memory in the following decade never failed to bemuse him. Internationally, Walter was a consultant to the World Health Organization in Geneva, Switzerland, beginning in 1969 on the interaction between the environment and human health.

For all his university, national and international service, he still found time to serve the local Ithaca community. Soon after moving to Ithaca in 1961 he chaired the City’s Urban Renewal Agency (1965-68) which led to the development of the Ithaca Commons. Beginning in 1998 he served locally as Commissioner of the Southern Cayuga Lake Inter-Municipal Water Commission that coordinated the use of the Bolton Point water supply facility with the needs of several local municipalities.

After retiring from teaching at Cornell he was elected a trustee of the Village of Cayuga Heights, NY (2000-02) and for three terms he served as the Village’s mayor (2002-08), where again he put theory into practice with a heady dose of levity and common sense. He also served on the Board of Directors of both the Tompkins County Sciencecenter (1982-85) and of Planned Parenthood (1991-95).

Walter Lynn’s many honors include, Fellow and Life member of the American Society of Civil Engineers, Fellow, American Association for the Advancement of Science, and National Associate of the National Research Council of the National Academies; but to Walter, the
highest reward was to be greeted cheerfully on the street while walking his dog Charlie (and then, Daisy) with a rousing “Hi-Walter”. He also enjoyed golfing, hiking, sailing, fishing, flying (airplanes), wood-carving, calling square dances and an occasional game of poker.

Valdimir (as mis-spelled on his birth certificate) Royal Lynn was born in New York City on October 1, 1928 to Norman Lynn (from Poland) and Gussie Gdalin (from Russia) who soon moved to Florida. Walter is survived by his wife Barbara Lynn of Ithaca, NY, their son, Michael Lynn of South Lake Tahoe, Nevada, an older brother, Robert Lynn of Miami, Florida, and a nephew, Jeffrey Lynn of Hollywood, Florida.

Richard Schuler, Chairperson; Malden Nesheim, Linda Falkson
Civil and Environmental Engineering Professor Emeritus George Lyon died in 2010 at the age of 93. Born in Hancock County, Illinois, George grew up in the state’s farm country. After graduating from the University of Illinois in 1940, George pursued a master’s degree in engineering at the State University of Iowa where he specialized in hydraulics and fluid mechanics. Upon completing his studies, he worked for the U.S. Engineer Department Hydraulics Laboratory in Iowa City where he participated in the design and construction of a physical model for the MacArthur Lock at Sault Sainte Marie, Michigan. Next he served in the Army Corps of Engineers from 1943 to 1946, as a surveyor for the construction of piers, docks, pipelines and other structures in the South Pacific. Upon the end of his military service, he gained his Professional Engineer license from the state of Illinois.

After World War II, Professor Lyon began his next career – teaching – as an instructor at the University of Minnesota. In 1947, he joined the faculty of the School of Civil Engineering at Cornell as an assistant professor and in 1954 was promoted to associate professor. Early in his Cornell career he taught fluid mechanics, hydrology,
hydraulics, surveying, marine navigation, and transportation. But by
the mid-1950s, his teaching was exclusively in the areas of
surveying and photogrammetry, and he regularly was part of the
faculty supervising the annual five-week summer surveying course
at “Camp Cornell” on the shore of Cayuta Lake until the final and
86th offering of this course in 1963. In the last dozen years of his
time at Cornell until his retirement in 1984, he served as Assistant
Director of the School of Civil and Environmental Engineering,
assuming an important role in the coordination of academic
advising, curriculum development, and academic standards and
records. Professor Lyon’s dedication to students was recognized by
his being named to the Class of 1979 Faculty Honors Program as “a
professor who through … wisdom, counsel and friendship
exemplified the ideals of higher education and of Cornell.”

During his 37 years at the university, George was also active as an
engineering consultant, often in concert with faculty colleagues,
participating in site selection studies for the capital of Brazil and
taking part in reservoir, drainage, and flood-control studies. He also
developed photogrammetric methods and for 23 years provided
computations for the section on field astronomy of the Solar
Ephemeris, a book of tables for surveyors. A consulting
contribution to Cornell was his design of the water circulation
system of the rowing tanks for the Cornell crew team’s practice
facility in Teagle Hall.

In 1950, he married Betty Taylor, and they had three children. Betty
passed away in 1980 after a long illness. In 1999, George moved
from Ithaca to Michigan to live near his daughter Maud. He is
survived by his sister, Ruth Linner, his children, Kathryn Lyon
Graham, Maud Lyon, and Robert Lyon, a granddaughter, and a step-
grandson.

James J. Bisogni, Chair; John F. Abel; Wilfried H. Brutsaert;
James A. Liggett; William D. Philpot