Robert Moffat Palmer died on July 3, 2010, at the age of 95.

Robert Palmer exerted a significant influence on the development of American music — one greater than his current reputation, years later, might suggest. Here at Cornell he founded one of the first Doctor of Musical Arts programs in music composition in the United States (and thus one of the first in the world), and generations of Cornell composers fondly remember his gentle, kind nature, his infallible ear, and his probing intellect. For many years he taught analysis courses using his own, idiosyncratic system, featuring yards-long charts and colored pencils; it became affectionately known around the Music Department as the “wallpaper” course.

Bob and his beloved wife of 60 years, Alice Westcott Palmer, repeatedly welcomed students into their home, often dosing them with a mysterious concoction Bob called Composers’ Punch — over cups of which he would be as likely to break out a Byrd motet for part singing or to discuss the latest writings of Lewis Mumford as to wax enthusiastic over his heroes, Ives and Bartók. (He met Bartók in the early Forties in, of all places, Kansas.)

Bob studied at the Eastman School of Music from 1934 to 1940 with Howard Hanson and Bernard Rogers, as well as during summers with Quincy Porter, Roy Harris, and — in the inaugural Tanglewood summer of 1940 — Aaron Copland. At that point he seemed poised to become a leading national figure. Critic Paul Rosenfeld praised him in 1935 as one of the composers “uncompromisingly battling in behalf of civilized values,” against the fashion for what Rosenfeld derided as simplistic banality and the passion for “front-page publicity.” Through the 1940s and ’50s, a steady stream of first-rate Palmer pieces attracted top performers in concert and on recordings: the Second Piano Sonata (1942; revised 1948), championed by John Kirkpatrick; Toccata Ostinato (1945), written for pianist William Kapell — a boogie-woogie in 13/8 time; the first Piano Quartet (1947); the Chamber Concerto No. 1 (1949); the Quintet for Clarinet, Piano, and Strings (1952). The most influential of these was the mighty Piano Quartet, which once loomed large as one of the major accomplishments of American chamber music.
One of Palmer’s early champions, Copland, included him in his much-noted New York Times article of March 1948, “The New School of American Composers.” (The others were Alexei Haieff, Harold Shapero, Lukas Foss, Leonard Bernstein, William Bergsma, and John Cage.) “I remember being astonished,” Copland wrote, “when I first saw him, and tried to make some connection in my mind between the man and his music. His outward appearance of a grocery clerk simply did not jibe with the complexities of the metaphysical music he was writing.” And then Copland lamented, “In recent years too much of his energy has gone into his teaching at Cornell University — but teaching is a familiar disease of the American composer.” Yet those who were, and still are, his students are grateful that he suffered that familiar disease here among us, at Cornell, from 1943 to 1980.

Palmer’s good friend and Cornell colleague, the pioneering musicologist William Austin, lamented how easily he might have been pigeonholed as an epigone of Roy Harris. On the contrary, Austin asserted, “Where Harris seems to herald some heroic victory for all America, Palmer concentrates on bitter struggle, ceaseless vigilance, and tragedy. Where Harris lyrically celebrates his own joys and sorrows, Palmer sings with a kind of devout serenity. . . . Palmer’s world is the grim, divided world of the 1940s and ’50s, doggedly refusing to despair, no matter how often its hopes for liberty, equality, and fraternity must be deferred.” Austin captures the grave lyricism that makes Palmer memorable, but no less important was his lively rhythmic language, which owed a debt in equal parts to American vernacular music, jazz, and Renaissance polyphony.

As early as 1955, Austin noted that “even if the later course of history should prove that Palmer’s style was like some sandbar about to be washed away by the current of the twelve-tone technique or musique concrète, he need have no regrets, for the works that he creates are taut and sturdy.” Indeed. Fashions come and fashions go, but Palmer’s taut, sturdy music is ripe for rediscovery by a wider public. It lives on in those who knew him, and in those who celebrate him now for a life well and generously lived.

Steven Stucky, Chairperson; Malcolm Bilson, James Webster
Early Childhood Education

Yih-Hsing Pao was born in Nanking, China in 1930. He studied first at National Chiao Tung University in Shanghai for two years and in the wake of the Chinese Civil War finished his studies at National Taiwan University in Taipei in 1952 with a B.S. in civil engineering. He came to the United States and obtained a M.S. degree in engineering mechanics from Rensselaer Polytechnic Institute and went on to Columbia University where he received his Ph.D. in wave propagation in solids in 1959. At Columbia he was exposed to an environment of fundamental applied physics, rather than just elements of structural engineering, and with his advisor, Professor Raymond Mindlin, he wrote his first paper, titled ‘Dispersion of flexural waves in an elastic, circular cylinder’, a classical subject of applied dynamics.

In coming to Cornell in 1958 as an assistant professor in the Department of Theoretical and Applied Mechanics (T&AM, is now merged with Mechanical and Aerospace Engineering) he invited colleagues to call him “Pao.” Friendly and outgoing, he soon attracted research students who went on to teach at many of the top universities in the US and abroad.
In 1974 Pao became Chair of T&AM and strove with great vigor to move applied mechanics at Cornell into the top ranks. In 1982, Pao succeeded in bringing the 9th US Congress of Applied Mechanics with over 600 participants to Cornell. Pao’s national leadership potential was recognized in 1985 when he was elected to the National Academy of Engineering. However, in 1980 his rising career was dealt a blow with the diagnosis of retina pigmentosa, an eye disease that eventually left him without sight. Nonetheless, in the 1980’s he spearheaded a major research project with the late Professor Larry Payne of Mathematics and several others on the subject of inverse problems in wave propagation with applications to nondestructive testing.

Research Accomplishments

Pao’s multi-disciplinary research might be called ‘Waves in complex continuous systems.’ Although Pao was primarily a theoretician, he believed in the importance of defining experiments coupled with thorough mathematical analysis. As chair of a service department in the College of Engineering, he strongly supported the teaching of engineering mathematics by engineering faculty. He also upgraded the experimental teaching laboratories in applied mechanics. He hired and supported faculty who established nationally recognized laboratories in ultrasonic wave propagation, magneto-mechanics, nonlinear dynamics, constitutive behavior of materials, and fracture mechanics.

Pao’s main research interest was in dynamics of solid materials, especially wave propagation, ultrasonics, nondestructive testing as well as the mechanics of structures in electromagnetic fields. He was a consultant to the Rand Corporation and collaborated with his former student, Dr C C Mow. In 1973 they jointly published their monograph *Elastic Waves and Dynamic Stress Concentrations*.

This pioneering work extended the ideas of static stress concentrations in solid elastic materials into the dynamic regime.
In anticipation of applications to the then new technologies of magnetic transportation and magnetic fusion, beginning in 1964, Pao with several graduate students, expanded his research into the mechanics of elastic structures in magnetic fields. Their discoveries in tuning natural frequencies of structures with static magnetic fields eventually were re-discovered decades later in the application of static electric fields to tune micro-sensors, called MEMS, which are used today in many consumer products.

The descriptor ‘waves in complex systems’ is appropriate for describing Pao’s research on waves in trusses and frames, begun in the late 1990’s. He and his student took the classical problem of steady vibration of trusses and frames and addressed the more difficult analysis of wave propagation in the transient regime.

Yih-Hsing Pao was the author or co-author of more than 100 papers in different fields, published in internationally renowned journals. In addition he was invited to publish more than six comprehensive review articles. His 1977 paper “Generalized Ray Theory and Transient Responses of Layered Elastic Solids” was selected by the International Union of Theoretical and Applied Mechanics (IUTAM) as one of the landmark papers in Mechanics of the 20th century (see Mechanics at the Turn of the Century, W. Schielen and L. van Wijngarden, eds., 2000).

That Pao kept his spirit and intellectual level in the face of his eye disease is absolutely amazing and deserves our highest respect and admiration. He was not only able to follow research at the cutting edge but also to inspire and take part in the research activity. He would often lecture at a conference with complete blindness, with a well-organized lecture, guiding the audience through his densely filled transparencies, made by one of his aides.

Return to Taiwan, National Taiwan University, Institute of Mechanics

In 1984, Yih-Hsing Pao was invited to Taiwan to plan the building of a new Institute of Applied Mechanics at the National Taiwan
University in Taipei. From 1989 -1994, he was Director of this new research institute that has since become a leader in educating engineers in engineering mechanics in Asia. In 1998 he retired from NTU and in 2000 became Professor Emeritus at Cornell. He finished his career in China with a position as professor at Zhejiang University. In his later years he was a senior statesman of applied mechanics, attempting to build bridges between researchers in Taiwan and mainland Chinese universities.

Honors and Awards

In addition to his election to the National Academy of Engineering, Professor Pao was awarded a Humboldt Prize by Germany where he visited the Technische Hochschule Darmstadt. He was also awarded an honorary doctorate from National Chiao-Tung University (Shin-Chu). In 1986 he was elected Academician by Academia Sinica (Taipei). From 1992 to 1995, he was elected President of the Chinese Society of Theoretical and Applied Mechanics, Taipei.

Personal Anecdotes

During his years at Cornell, Pao was known as a strong personality, who often expressed his views forcefully and always with a view towards the future. Pao moved his department into the realm of nonlinear dynamics in the late 1970’s by aggressively moving to hire a new professor who eventually led a nationally recognized team in chaos theory at Cornell. T&AM held weekly lunches at Johnny’s `Big Red’ restaurant in Collegetown. There, Pao would often lead a discussion as to where mechanics research was going or what role T&AM should play in teaching in the College of Engineering.

Pao was a hands-on advisor to his graduate students, always making suggestions and ‘red-lining’ their research writing and dissertations with extensive notes. While he often proffered advice to his students, he was patient and open to their own ideas, especially when they wished to move into new directions.

Family
Yih-Hsing Pao was married to Amelia Pao, now living in Taipei, Taiwan. They have three children, Winston Pao, May Pao and Sophie Pao. Yih-Hsing Pao is also survived by his brother Yih-Ho Pao, Ph.D., of Zhejiang, China. The Pao brothers are one of the few brother pairs to be elected to the National Academy of Engineering.

Francis C. Moon, Chairperson; Kolumbar Hutter, Wolfgang Sachse
Steven Maxfield Parrish’s death on January 11, 2012 at age ninety ended the life that, since his arrival as an Assistant Professor in the English Department in 1954, brought abundant prosperities and humanity to Cornell and the Ithaca community. After earning his B.A. in 1942 from the University of Illinois, Steve enlisted in the U.S. Navy in World War II, working for three years breaking Japanese codes, eventually as a Lieutenant Commander. Graduate study at Harvard followed and, though interrupted by three more years of Navy code-breaking during the Korean War, culminated in his 1954 Ph.D. Almost immediately during his first years at Cornell, teaching undergraduate and graduate courses in British Romanticism, and drawing imaginatively on his extensive wartime experience with computers, he launched publication of a series of concordances to the works of various writers in English and German (including Wordsworth, Yeats, and Freud), ultimately amounting to eighteen volumes.

But it was the arrival from England for safekeeping in the Cornell Library, during the Cold War of the early 1960s, of film copies of the entire Wordsworth family archive at Dove Cottage in Grasmere, that led Steve to plan what he called “a wholly new edition of a major poet, featuring not the final lifetime versions of his poems but the earlier manuscript versions that underlay those printed versions.” For him, “the aging Wordsworth rewrote endlessly, burying some of his best work beneath masses of revision, and even leaving a lot of it in manuscript, including The Prelude . . . which we now recognize as his greatest achievement.” Steve drew M. H. Abrams, Geoffrey Hartman, and Oxford’s Jonathan Wordsworth into collaborating in the overall editorship of the Cornell Wordsworth, inviting each of a number of other Wordsworth scholars to edit one of what ultimately became a series of twenty-one volumes. Steve’s energies and his canny sense of how to work congenially and effectively with others are amply recalled in such tributes as Stephen Gill’s, editor of the first volume published: “He was never, not once, patronizing or condescending to me or to others making an entry into the world of Wordsworthian scholarship. His good humor leavened all we did.” The excellence of the Wordsworth series inspired the even more extensive Cornell Yeats, amounting to thirty-two volumes.
Though he never aligned himself with literary deconstruction, an important critical and theoretical movement in the last three decades of his teaching career at Cornell, it seems useful now to probe the significance of remarks he made in 2004, in the English Department newsletter, about “The Editor as Man of Letters,” rejecting the view of scholars who put preeminent value on the final editions of a poet’s career. He argued instead that “language is prior to thought, not the other way around, so that early versions have great value as revealing the poet’s shifting intentions; revealing, that is, the poet’s struggle to define and perhaps even to comprehend his own purposes. . . . With a writer like Freud, our interest shifts a little, from the metaphor that reveals a particular predilection, to the metaphor that gives meaning to an abstract concept or an experience. In particular, to grasp and assess his abstract ideas you have to examine his metaphors, for metaphors are what bridge the gap that separates one thinking mind from another. Reading back, you start with the metaphor and draw inferences about the abstractions behind it. An analogy presents itself, once again, from cryptography—you start with enciphered text and endeavor to recover the plain-text meaning behind it.” Alluding to the extensive work he had done as a code-breaker during the latter years of World War II with Fredson Bowers as a Lieutenant Commander in the U. S. Navy, stationed near Washington at a former girls’ school called Mount Vernon Seminary, Steve recalled that “For four years Bowers and I were locked up together, with a number of other interesting and eccentric characters, most now dead, breaking the Japanese naval code.” Looking back in 2004, Steve saw himself and Bowers as “the earliest deconstructionists—proto-deconstructionists, crypto-deconstructionists!”

It seems worth suggesting that Steve’s remarkable professorial career as the editor of over a dozen Concordances of British and American poets and, even more so, as General Editor of both the Cornell Wordsworth and Cornell Yeats, had its inspiration in those intense code-breaking years. He was, as many of the editors of individual volumes of those works proclaim, a remarkable collaborator. Jim Mays saw Steve’s Cornell editions of Wordsworth and Yeats as “the wonder of the western world; they are changing the way texts are read at a sub-foundational level that is only now becoming understood; that happened because of his vision and attention to detail. The ability to hold the respect of grant administers, to mastermind and manage elaborate intellectual projects through to completion, and, not least, to adapt to the particular needs of members of his different teams are some of the qualities he brings to the job.” As Jon Stallworthy put it, “I thought the phrase ‘Captain of Industry’ was confined to Chief Executives of multinational corporations—until I saw Steve Parrish at work on the Cornell Yeats edition. No captain was ever more industrious, and industrious also as navigator, engineer, helmsman, and deckhand.” Mark Reed, “describ[ing] the indescribable,” seeing Steve was “like having sight of Proteus rising from the sea.” Few of his English Department colleagues knew how much Steve cherished the memories of that secret code-breaking livelihood and its achievements. But Robert Morgan (nephew of a downed World War II aviator) at the Ithaca Friends Meeting this June to celebrate Steve’s life, spoke of an endless number of casual Goldwin Smith hallway conversations when Steve shared anecdotes and incidents of those early years, sometimes even after saying “I shouldn’t reveal this—it’s still prohibited to—but I will anyway . . .” For Morgan, the current of cryptography ran deep in Steve’s mind.

When Steve retired in 1991, Department Chair Winthrop Wetherbee offered this tribute:
“He is so extraordinarily active on so many fronts, and so clearly in the vanguard of current thinking about textual criticism and the application of computers to literary studies, not to mention the study of the Romantic poets, that we naturally think of him as a much younger man. An exemplary citizen of the English Department, a stable and civilizing presence in our deliberations, generous in taking on administrative duties, and remarkable in his ability to launch his many students and student assistants on profitable scholarly work. In his late sixties he continues to be one of the most productive members of the Department, publishing widely, gaining fellowships and awards, designing new courses, while willingly carrying his share of the burden for service teaching, advising and other duties that scholars of eminence all too often tend to disdain. There is a kind of noblesse in his quiet devotion to teaching and scholarship.”

Reeve Parker, Chairperson; Paul Sawyer, Pete Wetherbee
Lawrence E. Payne Professor Emeritus of Mathematics passed away at Hospicare in Ithaca, New York on August 11, 2011 at the age of 87. Larry, as he was universally known, had a long and productive life. Born to a family of 5 in 1923 in McLeansboro, Illinois, a small farm town near Carbondale, he attended a one-room school house, followed by St. Henry Preparatory Seminary. He was first gainfully employed in 1941 as a salesman with the Merit Shoe Company in Chicago. He joined the U.S. Navy in 1943, where he served for a little over 3 years. Like many of his generation, he attended the university after his military service – presumably on the GI Bill. He earned a B.S. in Mechanical Engineering and then an M.S. and Ph.D. in Applied Mathematics from Iowa State University in Ames. It was there that he met his wife Ruth, with whom he eventually raised 5 children.

Larry started his academic career as an Assistant Professor at the University of Arizona. From there he joined the University of Maryland, where he spent 14 years at the Institute for Fluid Dynamics and Applied Mathematics. Larry came to Cornell in 1962-63 at a time when there was little or no applied mathematics in the Math Department. According to Larry’s long-time colleague, Anil Nerode, both Larry and Jim Bramble (who by the way was Larry’s first Ph.D. student) were invited and lured to Cornell from Maryland as much by the Cornell Children’s Tuition Scholarship as anything else. In any case, Larry was responsible for building up applied mathematics in the Math Department, and he played a key role in establishing the Center for Applied Mathematics (CAM) at Cornell. According to Nerode “Larry was the main integrating force in making CAM work. He was not involved in any previous rivalries and was a true gentleman in every way.”

Larry was a recognized international leader in the area of partial differential equations, especially in isoperimetric inequalities, improperly posed problems of mathematical physics, and elasticity. He authored or co-authored nearly 300 articles and 2 books. His works are gold mines of clever and insightful constructions. One of his most quoted is a paper with Hans Weinberger on the optimal Poincaré inequality for convex domains, where the second eigenvalue of a membrane is estimated in terms of the diameter of the domain (published in the Archive for Rational

Larry was the major advisor of 15 Ph.D. students during his career. He lectured and held long-term visiting positions in many universities throughout the world, including Genoa, Florence, Berlin, Dublin, Glasgow, Herriot Watt, Virginia and ETH in Zurich. In 1990 he received an honorary Doctor of Science from the National University of Ireland. A 3-day conference was held in Larry’s honor at Cornell in October 1990, which was well attended by friends and colleagues from around the world. Larry retired from Cornell in 1994, but remained remarkably productive in research until his death.

In spite of all of his accomplishments, Larry was a gentle, kind and amazingly modest person. When asked about his ground-breaking influence in the field of ill-posed problems, he attributed it to luck – he said that he got into the field before the easy problems were solved, and he was smart enough to get out before he had to solve the really hard problems. In fact his choice of problems, together with the techniques he developed to solve them, are of lasting value in all of the areas in which he worked. His colleagues the world over held him in the highest esteem as a dear friend, advisor and colleague. We too remember him that way.

Timothy J. Healey, Chairperson; Robert S. Strichartz, Lars B. Wahlbin
Charles W. Pearman, Professor Emeritus of Architecture at Cornell University and resident of Trumansburg, died early Friday morning, May 10, 2013, after a short illness. He died quietly with Carol Skinner, his wife and companion of almost 40 years, and his daughter, Marie-Laure Pearman, at his side.

Professor Pearman was born in Muskegon, Michigan on March 8, 1927, the only son of Harold and Florence Brown Pearman. He was co-valedictorian of his high school class and received his B. Arch degree from the University of Michigan, where he subsequently taught for several years. He also studied at the Institute of Design in Chicago and at Black Mountain College in North Carolina, a school noted for its progressive interdisciplinary art education as well as its distinguished creative faculty. During the Korean War he served in the Army Corps of Engineers doing research on housing for extreme climates. After the war he went into private practice and then was invited to teach again at the University of Michigan. In 1962 he came to the College of Architecture, Art and Planning at Cornell, where he taught for 41 years and also served for periods as Associate Dean and as Interim Dean. In the 1960’s, during the height of the Modern Movement, “Chuck” was the studio teacher
who brought the architectural ethos of the Midwest to the department.

Although he had an architectural practice, it was teaching that gave him his greatest joy. Professor Pearman was, above all, a dedicated, inspirational and empathetic design teacher. Students valued his quiet Socratic mentoring, his deep understanding of architectural space, and his sharing of places he loved, in order to expand their awareness. He is fondly remembered for his thoughtful guidance in the design studio and his quiet pedagogical style is carried on by the many Cornell graduates who have pursued careers in architectural education.

Professor Pearman was especially well known for his compassion for students in difficulty. He was a student advocate in the truest sense, and the first to recognize when students were in need of support beyond the classroom. He understood that a university education was much more than the simple sum of courses and credit hours taken for a degree.

Teaching in the Department of Architecture's Rome Program and Summer Programs in Japan was something Professor Pearman particularly enjoyed. He passionately embraced the traditional architecture and culture of Japan and over the course of two decades, he directed six summer programs for Cornell undergraduate architects to study in that country. Sensing that many of these students would be unfamiliar with the unique customs and conventions of the country they were about to explore for eight weeks, and that this limitation might compromise their understanding of the architecture, he developed and taught a preparatory course, the first devoted exclusively to the methods, principles and theories of Japanese architecture at Cornell.

Professor Pearman was co-founder of the Summer Program for the Introduction to Architecture and Environmental Design. This innovative six-week course was directed toward high school seniors and others who were considering professional studies in the field. It was the first of its kind to be offered by a school of architecture, and has served as a model for similar programs now offered by
Numerous other universities. After nearly forty years, the summer architecture career discovery program is still flourishing at Cornell.

Engaging students at their design desks with equal measures of softly rendered criticism and thoughtfully measured encouragement, Professor Pearman was the perfect one-on-one tutor. Beyond his full command of the European architectural tradition, he brought to his students an unusually rich understanding of the synthesis of American and Asian architectural perspectives. He was equally as comfortable with the mid-western meanings inherent in the architecture of Frank Lloyd Wright and his vast Ukiyo-e collection or the Tokyo Imperial Hotel; as with traditions evoked through the great 8th century Japanese Buddhist temples at Nara or the modernist architectural translations of Le Corbusier through the Japanese architect Kunio Maekawa. Chuck was the recipient of many honors and grants. Perhaps the most treasured was one his appreciative students nominated him for, the Martin Dominguez Award for Distinguished Teaching, which he was awarded in 1984.

Professor Pearman will be missed and those of us who had the privilege of being among his many students or admiring colleagues will be forever grateful for his kindly ways and deeply insightful turn of mind, and not least, for the way he instilled in each of us a deep appreciation for the artistry of building.

Leonard J. Mirin and Kent L. Hubbell
Remembering a Teacher’s Teacher and an Engineer’s Engineer.

Richard M. Phelan, 88, Professor Emeritus of Mechanical and Aerospace Engineering, died June 1, 2010 in Ithaca, New York. Surviving are his wife of 58 years, Olive; his son, William and family of Ithaca; and his daughter, Susan and family of Rochester, New York.

Professor Phelan was born on September 20, 1921 in Moberly, Missouri, the son of Frederick William and Ethel Ray Phelan. After earning his Bachelor of Mechanical Engineering degree from the University of Missouri in 1943, Dick joined the U.S. Navy, working there until becoming an instructor at Cornell in 1947. He earned the Master of Mechanical Engineering in 1950, ultimately becoming Professor of Mechanical Engineering in 1962 and Emeritus Professor in 1988.

At the end of World War II, the large influx of graduate students resulted in a serious housing shortage, and many were housed in the Watkins Glen Hotel --- bused to and from Cornell. Thus Dick began his Cornell experience surrounded by the U.S. Navy’s monotone “battleship gray” everywhere and on everything before he was able to move to a small basement apartment in Collegetown.

Dick published three widely-used textbooks: Fundamentals of Mechanical Design, 1956, 1962, and 1970; Dynamics of Machinery, 1967; and Automatic Control Systems, 1977. The first two were dedicated to his wife, Olive, typist and editor for all.

He was a longstanding member of the American Society of Mechanical Engineers, American Society for Engineering Education, Society for Experimental Stress Analysis, American
Gear Manufacturers Association, American Association of University Professors, New York Academy of Sciences, American Association for the Advancement of Science, Sigma Xi, Phi Kappa Phi, Pi Tau Sigma, and Tau Beta Pi.

Sabbatical leaves were spent at the University of Michigan; Lawrence Radiation Laboratory; traveling and lecturing in the U.S., Yugoslavia (as a Fulbright Scholar), and China.

Dick’s own thesis involved design and development of a laboratory rig to simulate dynamically loaded journal bearings. Experimental results from the ingeniously designed rig became the inspiration for later theoretical studies by students and colleagues.

Much later in his career Dick collaborated with president emeritus and former dean of engineering, Dale Corson, to create the intricate mechanism hidden in the base of the sundial installed on the Engineering Quadrangle in 1980 to commemorate Dale’s earlier retirement.

As suggested by the successive titles of his textbooks, Dick’s central interests gradually moved from mechanical design to feedback control systems, where he became a passionate advocate for a control strategy he called “pseudo-derivative control” (PDF).

Dick’s enduring hobby was playing the trumpet, first in a swing band and later as a charter member of the Ithaca Concert Band. He also had an interest in trains dating back to his childhood when his father was a railroader. His HO-gauge model train collection/layout was helpful in his control system course when students were promised they could “play trains” when they came to his home for dinner.

After his retirement in 1988, Dick and Olive travelled widely, covering all seven continents. Whether ballooning over the savannah of Africa or schmoozing with the penguins in Antarctica, it was a rewarding and magical time for both.
When he wasn’t traveling, Dick could reliably be found in the Statler Club at 11:30 having lunch and spirited conversation, and sharing his travel photos with other mostly emeritus faculty members.

Dick’s dual legacies of students and textbooks still reflect on Cornell. Administrators note that he ranked at the top of student-administered teaching evaluations, and alumni routinely asked about him more than any other. Following his death, former students wrote to describe him as a model teacher, outstanding researcher, and effective motivator. Others who knew him well noted his high integrity, complete honesty, and consistent fairness. Bill Nye (“The Science Guy” and former student) published an extensive appreciation, saying, “He was a good man, who lived a good life. His ideas will, one day, change the world. He certainly changed me and for that, I will be forever grateful”.

John Booker, Chairperson; Donald Bartel, Peter Harriott
Thomas T. Poleman was appointed to a new position on the economics of agricultural development on May 1, 1963, and he retired as a professor emeritus October 5, 1999. Tom received his Ph.D. in 1960 from the Food Research Institute at Stanford University and also an M.A. from Stanford and bachelors and masters degrees from the University of Missouri. After completing his doctorate, he spent an additional year at Stanford and two years as a senior economic analyst with the CIA. The Food Research Institute was similar to a department of agricultural economics, with a small but distinguished faculty, that specialized in development economics and in commodity market analysis. Thus, Tom’s training was appropriate for the position in the Department of Agricultural Economics at Cornell. (This Department is now the Dyson School of Applied Economics and Management, and development and international economics is one of the four pillars of this unit.)

An important portion of his work centered on the world food problem. Poleman was skeptical of the characterization of hunger in the world; he thought the breadth of the problem was exaggerated.
and that the characterization of the problem was wrong. Certainly over the span of his career, food production in the world grew at a faster rate than did the world’s population, and the issue was importantly about the location and distribution of food and incomes.

His views are illustrated by the titles of some of his papers: World Food: A Perspective (*Science* 1975), World Food: Myth and Reality (*World Development* 1977) and A Reappraisal of the Extent of World Hunger (*Food Policy* 1981). Tom provided critical evaluations of the methodologies underlying the estimates of the extent of world hunger, e.g., Global Hunger: The Methodologies Underlying the Official Estimates, a department working paper (#97-14). He also wrote about the “cures” for hunger, as in World Hunger: Extent, Causes, and Cures, a departmental research bulletin (#82-17). As a consequence of these views, his policy recommendations emphasized programs targeted to particular populations that he viewed as truly hungry.

Poleman’s other research was on diverse topics driven in part by projects that were of interest to the graduate students that he supervised. Unquestionably one of Tom’s major contributions was the supervision of graduate students’ research. This included not only Ph.D., but also M.S. and M.P.S. students. The total number of graduate students that he advised over his career is unknown to us, but one record shows that he supervised the work of 28 students in a 10-year span ending in the early 1990s. The diversity of topics is illustrated by the titles of Ph.D. dissertations such as “The Marketing of Sweet Potatoes in Rwanda: Commercializing a Perishable Crop Under Difficult Circumstances” and “The Impact of Agricultural Prices on Rural Development and Wages in India.”

Professor Poleman could be a tough supervisor, but many of his students appreciated his in-depth guidance and were very loyal to him. One example from a student doing a non-thesis research project: “He was a difficult task master … and sparks often flew. But in the end, the final product was of better quality than the draft material I had submitted … It eventually became [a staff paper and] it helped me get my very first job … in Abidjan, Ivory Coast, West Africa.”
Tom came from a research tradition that emphasized in-depth reviews of literature, a detailed understanding of the construction of secondary data used in the research (or collecting original data), and reporting results in monograph-type publications. Thus, a large portion of his writing, including co-authorships with students, was placed in departmental bulletins, working papers, and staff papers as well as in books. These modes of publication became increasingly inconsistent with the practice of the economics profession, which emphasizes publication in refereed journals. This perhaps explains, at least in part, why Tom’s work was not as influential as he hoped that it would be. Nonetheless, a book like *The New Economics of India’s Green Revolution*, written in collaboration with his Ph.D. student Rita Sharma and published by Cornell University Press (1993), was something of which he could be justly proud.

Moreover, students benefitted from his insistence on careful scholarship and writing.

Poleman was interested in the welfare of his department as well as his students, but he could be impatient with administrators. Department chairs and the deans typically wanted more information about the intended uses of the funds that Tom requested for his graduate students or for his travel, while he thought that the justifications for these funds were more-or-less self-evident. Of course, students appreciated his “going to bat” for their funding, and he certainly left a legacy of graduate student alumni who have made important contributions to the welfare of the world’s population.

Tom is survived by his wife, Charlotte; four children, Carol Becker, Clare Stephenson, Walter Poleman and Tom Poleman and their spouses; 12 grandchildren; and one great-granddaughter.

W. G. Tomek; B.F. Stanton; T. D. Mount
Most recollections about Uri Possen touch on two aspects: what a kind, gentle, caring scholar he was, and that the title “acting” (chairman) seemed like a permanent prefix since he took on that role so many times on behalf of the Economics Department, both before and after serving as its Chairman from 2002 to 2008. Both reflections focus on Uri’s fundamental nature: to help and serve others, which he did continuously throughout his forty one year professorial career at Cornell. Professor Possen was a dedicated, courageous scholar who was still teaching his undergraduate course in macroeconomics the semester he fell terminally ill, and he conducted his classes until the end.

Born in Denmark and raised in Sweden and then St. Catharines, Ontario, Canada, Uri studied mathematics as an undergraduate at the University of Toronto (B.A. 1965) where he also received his M.A. in economics (1967). He then moved on to Yale where he earned his Ph.D. in economics in 1971, supervised by James Tobin, who later became a Nobel Laureate. While in New Haven, many relationships were formed that became an integral part of his life, including meeting his future wife, Rhoda, and forming an association with Pierre Pestieau with whom he collaborated on many research projects throughout his career. Uri was trained as a
macroeconomist, but like Tobin, he quickly sought to draw policy implications from theory, and he continuously searched for mechanisms that might be effective in implementing policy. This led to his other life-long marriage, the intellectual connection between macro and public economics - - analysis of the big picture and how to get it done.

Above all, Uri was collegial - - in his research, in his guidance of students and as department chair. Most of his publications were co-authored collaborations, many with present or former colleagues on Cornell’s faculty. His body of joint work with Pierre Pestieau and with Steve Slutsky, both public sector economists who formed the Cornell economics department’s Yale “mafia” in their early years as assistant professors here, continued throughout Uri’s lifetime. Their joint work formed the heart of Uri’s effort to introduce the reality of institutions and particular mechanisms to the implementation of macroeconomic policies. Early examples were their work on particular types of fiscal policy, whether they led to the over- or under-supply of public goods and whether or not the structure (multi-level or unitary) of government(s) mattered. Many of the analyses with Pestieau focused upon the distributional consequences of macro-policies. Later, more purely public sector analyses with both Pestieau (Professor of Economics Emeritus, at the Universite de Liege, in Belgium) and Slutsky (Professor of Economics at the University of Florida) explored the simultaneous interaction between alternative tax policies, tax evasion and government enforcement policies. These analyses highlight Uri’s pursuit of modeling the reality of a society and of tailoring proposed policy to accommodate human anticipation and reaction, including the impact of the random deployment of policies on individual and aggregate response.

Other collaborations with Cornell colleagues David Easley (a theorist) and Nick Kiefer (an econometrician) developed from Uri’s observation following a macroeconomic seminar at Cornell that the elegant model presented simply did not capture what happens in a real economy. The result was several papers linking policy in an uncertain world with imperfections in particular markets in order to assess likely economy-wide outcomes. He also collaborated with
Liam Ebrill at the International Monetary Fund (also a former economics department colleague at Cornell) to explore the added complications that inflation might add to a fiscal policy’s effect on the economy. Later on, Uri became adept at working out numerical simulations of particular models to gain an understanding of the relative size (effectiveness) of alternative prescriptions. Early in his career he had also incorporated the use of real numbers as an educational tool in an undergraduate course on asset markets. There, in the 1970s, long before Wall Street was flying high, he encouraged each student to “invest” in a hypothetical portfolio of securities that they selected, and Uri then had them submit the results monthly for comparison and analysis, a time-consuming activity for a large class. What mattered to Uri is that the students loved it and learned through it.

What was so evident was Uri’s commitment to community, whether it be his family, Rhoda and his two children, David and Rachel, of whom he was so immensely proud, his colleagues and students, and the Ithaca Jewish community to which he was devoted. Pestieau observed that on his first visit to Israel to collaborate, while Uri and his family were on sabbatic leave at Hebrew University in Jerusalem, “I rarely saw Uri as happy as in those days.” We are fortunate at Cornell that he returned to this community so that his network of friends would continue to visit. Subsequently, as chair of the economics department, he was instrumental in hiring a number of new junior faculty members, several of whom recall fondly his efforts to mentor them through their successful tenure reviews.

Uri’s overriding concern was for the well-being of others he came in contact with. His door was always open to students and colleagues, he always strove to understand why things were the way they were and how they could be made better, and he moved on from every setback, trying to make the world a better place. Uri Possen was a gentleman and a scholar.

Richard E. Schuler, Chairperson;
David A. Easley, Tom Davis
Christopher Pottle, professor emeritus of Electrical Engineering died on February 15th, 2011 at his home in Oxford, Maine. He was 79.

Born in New Haven, Connecticut, on February 14th, 1932, Chris was one of two sons and a daughter of Frederick Albert and Marion Isabel (Starbird) Pottle. Chris graduated from Phillips Exeter Academy in 1949 and earned a bachelor's in English at Yale in 1953. He served in the U.S. Army from 1954 to 1956 as an engineer at Aberdeen Proving Ground in Maryland. He earned a Ph.D. in Electrical Engineering at the University of Illinois at Urbana in 1962 and was a Fulbright scholar at the Max Planck Institute for Physics in Munich, Germany, 1958-59.

While in Germany, he met Marcia Suthon, and they married in 1961. Upon receiving his doctoral degree Pottle joined the faculty at Cornell University. He was one of the founders of the Computer Science Department at Cornell and was known for his forward-thinking approach, constantly incorporating new technologies in a field that changed rapidly during his 36 years of teaching. He was also known for his dedication to creating a positive educational experience for his students and could often be found with them, sleeves rolled up, hard at work in the labs that were a central part of the electrical engineering curriculum. The wisdom, discipline, and humor he brought to his work impacted over four thousand graduates of the school during his years of teaching.

He was a Fulbright scholar at the University of Erlangen-Nuremberg, Germany, in 1966-67, and spent sabbatical leaves at the IBM Watson Research Laboratories, at the General Electric Company's Electric Utility Systems Engineering Department, and at Carnegie-Mellon University.

Upon retirement in 1998, Chris and Marcia moved to Oxford, Maine, his mother's family home for several generations, where Chris had spent summers in childhood and throughout his life. Chris expressed his love of the outdoors through camping, hiking, sailing, and boating, particularly at the family camp in nearby Otisfield Cove, and worked hard to protect the camp for future generations of his extended family.
Chris began a lifetime of dedicated service in the Episcopal Church as a young child, singing in the boys' choir at Christ Episcopal Church, New Haven. He served as acolyte, on vestries, as treasurer and in countless other ways at churches in New Haven, Ithaca, and most recently in Norway, Maine. As a Christian peace activist, Chris' passion for social and environmental justice brought him to leadership roles in many organizations, including the Episcopal Peace Fellowship, the Maine Council of Churches, Maine Interfaith Power and Light, and the Thompson Lake Environmental Association (TLEA). He often brought his analytical and computing skills to bear in such volunteer work, serving as treasurer of a number of organizations in which he also helped to integrate current technology.

Besides his wife, Chris is survived by a son, Samuel W. Pottle of Madison, Wisconsin and Tokyo, Japan; a daughter, Manette B. Pottle of Camden, Maine; a son, John F. Pottle of Williamsburg, Virginia; and as many nieces, nephew, cousins, and friends as there are stars in the sky.

Dean of Faculty Office (Information obtained from Ithaca Journal Obituary)
Kevin Pratt, an Assistant Professor in Cornell’s Department of Architecture died suddenly at his home at the age of 43 on February 19, 2013. A highly respected and multi-faceted individual, he taught courses in architectural design, building technology, environmental systems, and sustainable form.

Kevin received his Bachelor of Architecture degree from Columbia University in 1992 and his Master of Architecture degree from the Architectural Association in London in 2004. During the interim period between these two degrees, he worked as a project architect/designer on numerous projects. Returning from England with a specialty involving Energy and the Environment, he became the Director of Research at Kieran Timberlake Associates LLP which in 2007 was recognized as the Architecture Firm of the Year by the American Institute of Architects.

Recognizing that professional practice did not provide an environment for long term research in architecture, Kevin decided to return to academia. To paraphrase Kevin’s own words, he came to Cornell in 2008 with the goal of helping to modernize architectural education, particularly with respect to the design and construction of sustainable buildings. His intentions were to achieve this goal.
through interdisciplinary research and diverse collaborations critical to solving these complex problems.

Throughout his short teaching career at Cornell, Kevin strived to provide his students in environmental systems with a solid historical and conceptual framework in order to understand the critical relationships between systems, theories of design and sustainable practice. However, Kevin also strongly believed that the interlinked fields of building science and sustainable design were advancing so rapidly that it was necessary to have a strong connection to state-of-the-art research in this area, particularly if what one is teaching is to have any practical relevance to students. To this end, despite a heavy teaching load during his short five-year tenure, he continued to investigate new software methods to predictively analyze potential designs and design strategies. From his all-too-brief research endeavors collaborating with Cornell’s Program of Computer Graphics, the Atkinson Center, and the Department of Mechanical Engineering, Kevin introduced advanced computational methods of simulation to his architectural students with the full knowledge that such tools were becoming the de facto methods of analysis in the profession.

In many ways, Kevin’s impact on the Department of Architecture was substantial. His passion for teaching and learning, his insatiable curiosity, and his superb ability to provide historical backgrounds, intellectual criticism, and articulate new ideas will long be remembered. Future students unfortunately will not be able to be exposed to his superb teaching skills, but his multi-disciplinary approach to architecture should be forever engrained in the design curricula of the future.

His contributions to the architectural profession reached well beyond Cornell’s boundaries. He was actively involved in architectural juries and lecturing at many universities and participated in the larger cultural discourse through his writing for Artforum and TimeOut New York. He also had formed a collaborative practice, Epiphyte Lab, which received several grants connecting scientific research to artistic endeavors.
Kevin is survived by his wife, Dana Cupkova; three children, Tallulah, Alexander and Gwendolyn; his parents Howard Pratt and Susan Kaye; a brother, David Riley; a half-brother Riley; stepmother Sharon Pratt, stepfather Jerome Kaye and two stepbrothers, Jake and Drew Decker.

Donald Greenberg