Enantioselective Alkylation of 2-Alkyl Pyridines Controlled by Organolithium Aggregation

Joshua J. Gladfelder,† Santanu Ghosh,† Maša Podunavac,† Andrew W. Cook,† Yun Ma,† Ryan A. Woltonist,‡ Ivan Keresztes,‡ Trevor W. Hayton,*† David B. Collum,*‡ Armen Zakarian*†

†Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106, United States
‡Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States

Supplementary Information II
<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Title</td>
<td>S02-30_13C</td>
</tr>
<tr>
<td>Origin</td>
<td>Varian</td>
</tr>
<tr>
<td>Instrument</td>
<td>inova</td>
</tr>
<tr>
<td>Solvent</td>
<td>cdcI3</td>
</tr>
<tr>
<td>Temperature</td>
<td>25.0</td>
</tr>
<tr>
<td>Number of Scans</td>
<td>100</td>
</tr>
<tr>
<td>Relaxation Delay</td>
<td>1.0000</td>
</tr>
<tr>
<td>Spectrometer Frequency</td>
<td>150.79</td>
</tr>
<tr>
<td>Nucleus</td>
<td>13C</td>
</tr>
</tbody>
</table>

1o

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Title</td>
<td>JG-2-054-3</td>
</tr>
<tr>
<td>Origin</td>
<td>Varian</td>
</tr>
<tr>
<td>Instrument</td>
<td>inova</td>
</tr>
<tr>
<td>Solvent</td>
<td>cdcI3</td>
</tr>
<tr>
<td>Temperature</td>
<td>36.0</td>
</tr>
<tr>
<td>Number of Scans</td>
<td>8</td>
</tr>
<tr>
<td>Relaxation Delay</td>
<td>4.8000</td>
</tr>
<tr>
<td>Spectrometer Frequency</td>
<td>499.85</td>
</tr>
<tr>
<td>Nucleus</td>
<td>1H</td>
</tr>
</tbody>
</table>

1p
### Parameter	Value
1 Title | JIG-2-056-13C
2 Origin | Varian
3 Instrument | inova
4 Solvent | cdcl3
5 Temperature | 35.0
6 Number of Scans | 80
7 Relaxation Delay | 1.00000
8 Spectrometer Frequency | 125.70
9 Nucleus | 13C

![Chemical Structure](image1)

### Parameter	Value
1 Title | JIG-3-116-1H
2 Origin | Varian
3 Instrument | inova
4 Solvent | cdcl3
5 Temperature | 25.0
6 Number of Scans | 8
7 Relaxation Delay | 4.80000
8 Spectrometer Frequency | 599.64
9 Nucleus | 1H

![Chemical Structure](image2)
Parameter	Value
1 Title | JG-2-026-1H
2 Origin | Varian
3 Instrument | Inova
4 Solvent | dcdl3
5 Temperature | 25.0
6 Number of Scans | 4
7 Relaxation Delay | 4.8000
8 Spectrometer Frequency | 499.85
9 Nucleus | 1H

Parameter	Value
1 Title | JG-2-026-13C
2 Origin | Varian
3 Instrument | Inova
4 Solvent | dcdl3
5 Temperature | 25.0
6 Number of Scans | 196
7 Relaxation Delay | 1.0000
8 Spectrometer Frequency | 126.70
9 Nucleus | 13C
Parameter | **Value**
---|---
1 Title | S02-174_1H
2 Origin | Varian
3 Instrument | inova
4 Solvent | cdc15
5 Temperature | 30.0
6 Number of Scans | 4
7 Relaxation Delay | 30.0000
8 Spectrometer Frequency | 499.86
9 Nucleus | 1H

![NMR Spectrum](image1)

Parameter	**Value**
1 Title | S02-174_13C
2 Origin | Varian
3 Instrument | inova
4 Solvent | cdc13
5 Temperature | 30.0
6 Number of Scans | 252
7 Relaxation Delay | 1.0000
8 Spectrometer Frequency | 126.70
9 Nucleus | 13C

![NMR Spectrum](image2)
Parameter	Value
1 Title | SG2-165R
2 Origin | Varian
3 Instrument | Inova
4 Solvent | CDCl3
5 Temperature | 30.0
6 Number of Scans | 4
7 Relaxation Delay | 30.0000
8 Spectrometer Frequency | 499.85
9 Nucleus | 1H
Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Title</td>
<td>JG-2-244-13C</td>
</tr>
<tr>
<td>2 Origin</td>
<td>Varian</td>
</tr>
<tr>
<td>3 Instrument</td>
<td>Innova</td>
</tr>
<tr>
<td>4 Solvent</td>
<td>CDCl3</td>
</tr>
<tr>
<td>5 Temperature</td>
<td>25.0</td>
</tr>
<tr>
<td>6 Number of Scans</td>
<td>244</td>
</tr>
<tr>
<td>7 Relaxation Delay</td>
<td>1.00000</td>
</tr>
<tr>
<td>8 Spectrometer Frequency</td>
<td>125.70</td>
</tr>
<tr>
<td>9 Nucleus</td>
<td>13C</td>
</tr>
</tbody>
</table>

Chemical Structures

4a

![Chemical Structure 4a](image1)

4b

![Chemical Structure 4b](image2)
S50

Parameter	**Value**
1 Title | JG-2-250-13C
2 Origin | Varian
3 Instrument | vnmrs
4 Solvent | cdcl3
5 Temperature | 20.0
6 Number of Scans | 144
7 Relaxation Delay | 1.0000
8 Spectrometer | 100.53
9 Nucleus | 13C

![Diagram of molecule 4d](image)

Parameter	**Value**
1 Title | JG-3-016-1H
2 Origin | Varian
3 Instrument | inova
4 Solvent | cdcl3
5 Temperature | 25.0
6 Number of Scans | 8
7 Relaxation Delay | 4.8000
8 Spectrometer Frequency | 599.84
9 Nucleus | 1H

![Diagram of molecule 5](image)
S1

Parameter	**Value**
1 Title | JG-S1_13C
2 Origin | Varian
3 Instrument | Inova
4 Solvent | cdc13
5 Temperature | 23.0
6 Number of Scans | 368
7 Relaxation Delay | 1.00000
8 Spectrometer Frequency | 125.70
9 Nucleus | 13C

S1

Parameter	**Value**
1 Title | JG-2-293-1H
2 Origin | Varian
3 Instrument | Inova
4 Solvent | cdc13
5 Temperature | 25.0
6 Number of Scans | 8
7 Relaxation Delay | 4.80000
8 Spectrometer Frequency | 499.85
9 Nucleus | 1H
<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Title</td>
<td>JG0-S6-13C</td>
</tr>
<tr>
<td>Origin</td>
<td>Varian</td>
</tr>
<tr>
<td>Instrument</td>
<td>Inova</td>
</tr>
<tr>
<td>Solvent</td>
<td>cdCl3</td>
</tr>
<tr>
<td>Temperature</td>
<td>25.0</td>
</tr>
<tr>
<td>Number of Scans</td>
<td>196</td>
</tr>
<tr>
<td>Relaxation Delay</td>
<td>1.0000</td>
</tr>
<tr>
<td>Spectrometer</td>
<td>125.70</td>
</tr>
<tr>
<td>Frequency</td>
<td></td>
</tr>
<tr>
<td>Nucleus</td>
<td>13C</td>
</tr>
</tbody>
</table>

![Chemical structure](image)

S6
Copies of NMR spectra for aggregate (2-Py)(CH₂CH₂OMe)CHLi•(R)-Li¹DA•HMPA 1r.

1D NMR [³¹P, ⁶Li] Spectroscopic Studies

Figure S2-1. ³¹P NMR spectra (202.404 MHz, toluene-d₈) of 0.10 M 1r-Li prepared from (R)-¹DA with 2.0 equiv [⁶Li]n-BuLi, 1.0 equiv 1r, and 0.75 equiv HMPA recorded at −80 °C after aging at 0 °C for 40 mins: (A) with broad-band ⁶Li decoupling; (B) fully coupled. δ 24.88 (t, ²J_P-Li =3.50), 23.61 (t, ²J_P-Li = 4.51).
Figure S2-2. 31P NMR spectra (202.404 MHz, toluene-d_8) of 0.10 M 1r-Li prepared from (R)-1DA with 2.0 equiv [6Li]n-BuLi, 1.0 equiv 1r, and 0.75 equiv HMPA recorded at –80 °C after aging at 0 °C for 40 mins: (A) with single frequency 6Li decoupling 20 Hz off resonance from the 6Li doublet at 2.48 ppm; (B) with single frequency 6Li decoupling of the 6Li doublet at 2.48 ppm.
Figure S2-3. 6Li NMR spectra (73.578 MHz, toluene-d_8) of 0.10 M 1r-Li prepared from (R)-1DA with 2.0 equiv $[^6]$Li-n-BuLi, 1.0 equiv 1r, and 0.75 equiv HMPA recorded at –80 °C after aging at 0 °C for 40 mins: (A) with broad-band 31P decoupling; (B) fully coupled. δ 2.47 (d, $^2J_{Li-P}$ = 3.50), 1.64 (s).
Figure S2-4. 6Li NMR spectra (73.578 MHz, toluene-d_8) of 0.10 M 1r-Li prepared from (R)-1DA with 2.0 equiv $[^6\text{Li}]n$-BuLi, 1.0 equiv 1r, and 0.75 equiv HMPA recorded at $-80 \, ^\circ\text{C}$ after aging at 0 $^\circ\text{C}$ for 40 mins: (A) off-resonance decoupling; (B) on-resonance decoupling of the ^{31}P triplet at 23.61 ppm; (C) on-resonance decoupling of the ^{31}P triplet at 24.9 ppm.
Figure S2-5. 1H NMR spectrum (499.76 MHz, toluene-d_8) at –80 °C of a sample containing 1r-Li.