Sodium Diisopropylamide-Mediated Dehydrohalogenations: Influence of Primary- and Secondary-Shell Solvation

Yun Ma, Russell F. Algera, Ryan A. Woltornist, and David B. Collum*

Department of Chemistry and Chemical Biology, Baker Laboratory, Cornell University, Ithaca, New York 14853-1301, United States

Supporting Information

ABSTRACT: Eliminations of alkyl halides by sodium diisopropylamide (NaDA) in tetrahydrofuran (THF)/hexane or THF/N,N-dimethylethylamine (DMEA) solutions are facile and complementary to analogous reactions of lithium diisopropylamide in THF. Rate studies show a dominance of monomer-based metalations and prevalent secondary-shell effects overlaid on primary-shell effects. 1-Halooctanes exclusively undergo elimination rather than substitution. Rate and isotopic labeling studies on 1-bromooctane reveal an E2-like elimination pathway via trisolvated NaDA monomer. By contrast, 1-chlorooctane is eliminated via disolvated monomer through a carbenoid mechanism. exo-2-Norbornyl chloride and bromide are also eliminated via disolvated monomer; a syn E2 mechanism is inferred for these substrates. The cis- and trans-4-tert-butylcyclohexyl bromides show a preference for the elimination of the cis isomer ($k_{cis/ax}/k_{trans/eq} = 10$). Rate and isotopic labeling studies are consistent with a trans-diaxial E2 elimination via trisolvated monomer for the cis isomer and a carbenoid mechanism via disolvated monomer for the trans isomer. Vicinal haloethers show substrate-dependent reactivities, affording alkenes and enol ethers. trans-1-Bromo-2-methoxycyclohexane provides enol ether 1-methoxycyclohexene, while trans-1-bromo-2-methoxycyclooctane provides dimeric products consistent with fleeting cycloocta-1,2-diene (cyclic allene), which was fully characterized as two conformers.

INTRODUCTION

The seemingly subtle factors that dictate whether an anion functions as a base or as a carbon-centered nucleophile can be confounding. Notions of steric effects, nucleophile polarizability, ion pairing, solvent polarity, and counterion effects crucially fail to account for aggregation and primary-shell solvation and are thus too restrictive to fully explain the SN$_2$−E2 dichotomy.1−3 We find it intriguing, for example, that with lithium diisopropylamide (LDA), 1-bromooctane undergoes both elimination (2) and substitution (3), but with sodium diisopropylamide (NaDA), the elimination product (2) is obtained exclusively (eq 1).4 This paper examines NaDA-mediated dehydrohalogenations as part of an effort to establish the foundational structure-reactivity principles in organo-sodium chemistry as well as to pique the interest of consumers of strong bases.5−8 What stands out to us is the number of observations that do not follow the script found in standard organic chemistry textbooks.9 Moreover, deconvolution of solvation into primary- and secondary-shell effects brings a noteworthy perspective to the iconic issues of reactivity and selectivity.

RESULTS AND DISCUSSION

Methods. NaDA is prepared from sodium dispersion as a 1.0 M stock solution in N,N-dimethylethylamine (DMEA) as illustrated in eq 2.4 Owing to our emphasis on mechanism, we take the added precaution of recrystallizing NaDA. Although we document secondary shell solvation effects, THF/DMEA and THF/hexane solutions of NaDA would be nearly indistinguishable to the average practitioner owing to the highly favorable substitution of THF for DMEA to form tetrasolvated dimer 4 as
the sole observable form and relatively minor differences in polarity of hexane and DMEA. Thus, while we use THF/hexane mixtures, others are likely to find the stock solutions of NaDA/DMEA with added THF to be more convenient. Because of the volatility of many of the products, yields are often determined using NMR spectroscopy relative to a internal standard (benzene). These calibrated yields are listed in parentheses. Overall, the eliminations are free of significant byproducts unless otherwise noted.

Reaction rates were monitored using 1H NMR spectroscopy, as previously described. The often-preferred strategy of monitoring via in situ infrared spectroscopy is not possible in these reactions, as deposition of sodium halides on the detection window (silicon chip) causes spectral distortion. Precipitation is, however, a useful diagnostic for detecting the onset of reaction. Rate studies of NaDA-mediated dehydrohalogenations show, without exception, half-order NaDA dependencies that implicate monomer-based metalations. Figure 1 is emblematic; all other measured half orders in NaDA are archived in the Supporting Information.

![Figure 1](image-url)

Figure 1. Plot of the initial rate versus [NaDA] for the dehydrobromination of 1-bromoocatane (0.050 M) in 5.1 M THF/hexane at −78 °C. The curve depicts an unweighted least-squares fit to \(y = k[\text{NaDA}]^2 \); \(k = (24 \pm 3) \times 10^{-5} \); \(n = 0.55 \pm 0.07 \).

The reaction orders in THF are sensitive to the choice of substrate, eliciting THF concentration dependencies denoted in the generalized and idealized rate law (eq 3; \(A = \text{i-Pr}_2\text{NNa} \)). Zeroth, first, and second orders in THF appeared to implicate metalatations via di-, tri-, and tetrastolvated monomers, respectively (eqs 4–6). However, control experiments, originally developed for the study of lithium amide chemistry, revealed that most THF-concentration-dependent rates stem from a combination of sterically sensitive primary-shell solvation effects overlaid on sterically insensitive secondary-shell solvation effects. In these control experiments, the primary and secondary effects may be disentangled through the use of hindered polycylated THF ligands (2,2-dimethyltetrahydrofuran, 2,5-dimethyltetrahydrofuran, or 2,2,5,5-tetramethyltetrahydrofuran) as poorly coordinating but still polar cosolvents.

Secondary-shell (medium) effects on the chemistry of LDA typically account for very low (0–20%) rate changes, spanning <1.0 M THF/hexane to neat THF. Having established that NaDA is stable in 2,5-dimethyltetrahydrofuran (2,5-Me_2THF) at \(\leq -20^\circ\text{C} \), we found secondary-shell effects to be measurable and consequential to the mechanistic interpretation. Most noticeably, apparent evidence of tetrastolvates (eq 6) proved to be illusory, stemming instead from the influence of the secondary-shell solvation on trisolvated monomer-based pathways (eq 5). Similarly, a number of apparent first-order dependencies are traced to the secondary-shell effects overlaid on zeroth-order dependencies.

\[
\frac{d[RX]}{dt} = \left[k_0[\text{THF}]^n + k_1[\text{THF}] + k_2[\text{THF}]^2 \right] [\text{RX}] \left[\text{A}_2\text{S}_4 \right]^{1/2}
\]

(3)

\[
1/2 \text{A}_2[\text{THF}]_2 + \text{RX} \rightarrow \left[\text{A}[\text{THF}]_2\text{RX} \right]^2
\]

(4)

\[
1/2 \text{A}_2[\text{THF}]_2 + \text{RX} + \text{THF} \rightarrow \left[\text{A}[\text{THF}]_3\text{RX} \right]^2
\]

(5)

\[
1/2 \text{A}_2[\text{THF}]_2 + \text{RX} + 2\text{THF} \rightarrow \left[\text{A}[\text{THF}]_4\text{RX} \right]^2
\]

(6)

We attribute the most highly solvated monomers—the tetrastolvates—to fully open the transition structures and the disolves to mechanisms accommodating the halogen—sodium contacts in the rate-limiting transition structures. Density functional theory (DFT) calculations were carried out at the B3LYP/6-31G(d) level with single-point calculations at the MP2 level of theory. All allusions to transition structures are supported by computed transition structures manifesting a single negative frequency archived in the Supporting Information. The computations are used semi-quantitatively to show that the proposed mechanism is plausible rather than to rigorously resolve nuanced mechanistic details. Energies are mentioned sparingly, especially when deviations from isodesmicity or charge separation would create severe energetic distortions owing to electron correlation problems.

1-Bromooctane (I). Reaction of 1-bromooctane (0.010 M) with 1.2 equiv of NaDA in THF/hexane at −78 °C affords 1-octene to the exclusion of N-(1-octyl)diospropylamine in 85% yield by 1H NMR spectroscopy relative to benzene as the internal standard (eq 7). Eliminations under pseudo-first-order conditions, in which NaDA is maintained at synthetically standard concentrations (0.10–0.30 M) in THF/hexane, show clean exponential decays with no evidence of the curvature emblematic of autocatalysis. The first-order dependence on 1-bromooctane is confirmed by the concentration-independent pseudo-first-order rate constants (\(k_{\text{obsd}} \)) versus [1] and by initial rates that linearly correlate with the initial concentrations of 1. A plot of initial rates for the elimination of 1 versus NaDA concentration shows a half-order dependence (Figure 1), implicating a monomer-based metalation. A plot of the initial rates versus THF concentration using hexane as an inert cosolvent reveals an approximate second-order THF dependence (Figure 2, curve A). The data seemed to implicate tetrastolvated monomers (eq 6). However, plotting initial rates versus THF concentration using 2,5-Me_2THF as the inert cosolvent reveals an approximate first-order THF dependence (Figure 2, curve B). The rate data are thus consistent with the trisolvated monomer-based mechanism in eq 5.

The eliminations of isotopomers 1,1-1d_2 (eq 8) and 2,2-1d_2 (eq 9) implicate an E2 elimination without an intervening carbendo. DFT computations show both anti- and syn-periplanar transition structures 8 and 9 to be viable, with 8 being >3 kcal/mol higher than 9. (We routinely found the
computed carbene structures to be unusually stable.) The solvent order, when placed in the context of results from other eliminations described below, makes a strong case for 8. Literature precedent supports such a hypothesis.\(^1\)

1-Chlorooctane (5). NaDA-mediated elimination of 5 proceeds smoothly at \(-20^\circ\text{C}\) in 89% NMR yield (eq 7). In contrast with 1-bromooctane, monitoring the reaction by \(^1\text{H}\) NMR spectroscopy reveals a linear dependence of the initial rates on THF concentration with a substantial nonzero intercept (Figure 3, curve A). In conjunction with a half-order NaDA dependence (0.6 ± 0.1), the THF dependence would seem to suggest contributions of both di- and trisolvated monomers (eqs 4 and 5) to the exclusion of tetrasolvated monomer. Yet again, however, the solvent dependence is shown to be illusory: use of a polar, noncoordinating cosolvent 2,5-Me\(_2\)THF in place of hexane reveals a zeroth-order dependence (Figure 3, curve B).

At first glance, the low solvation number appeared to implicate a syn-transition structure 10, displaying distinct Na–Cl contacts as both plausible and computationally viable. Alkoxide-mediated eliminations in nonpolar (nonhydroxylic) solvents led other investigators to invoke M–X ion pairing.\(^{\text{1b}}\) However, elimination of 1,1,5,5-d\(_2\) afforded a small but most likely primary isotope effect \((k_H/k_D = 2.5)\) and an isotopic distribution (eq 10) consistent with a carbene-based mechanism via the transition structure 11. Transition structure 11 is calculated to be >5 kcal/mol more stable than 10.

1-Iodoctane. Reaction of 6 with NaDA in THF/hexane reveals only elimination (eq 7) but is too fast to be monitored conveniently at \(-78^\circ\text{C}\).
1-Fluorooctane. At 25 °C, the elimination of 7 (eq 7) is too slow to compete with THF decomposition. We will offer a solution to the problems posed by recalcitrant metalations and competing solvent decomposition in due course.

2-Bromoocctane. Zaitsev’s rule states that “the alkene formed in greatest amount is the one that corresponds to removal of the hydrogen from the β-carbon having the fewest hydrogen substituents.” As a quick check of the veracity of this often-taught rule, we examined the NaDA-mediated elimination of 2-bromoocctane. As shown in eq 11, we observed 30:1 selectivity for the terminal alkene; this is the highest reported regioselectivity. Removal of Zaitsev’s rule as a centerpiece of our undergraduate curriculum seems overdue.

n-Octylsulfonate Esters. A brief excursion to investigate n-octyl sulfonate esters revealed that NaDA/THF-mediated elimination or substitution of benzenesulfonate is precluded by a dominant orthosodiation (eq 12), as confirmed by quenching with D2O. Although this pathway has not been reported for LDA, metalations of benzenesulfonate esters by n-BuLi are well documented. Treatment of triflate 13 with NaDA/THF at −78 °C provided a mixture of substitution and elimination products (eq 13). Although the absolute rates are too high to conveniently monitor, the relative proportions of substitution and elimination show THF dependence with a distinct nonzero intercept (Figure 4). The observed independence on the NaDA concentration, in conjunction with the dominance of monomer-based reactions for all NaDA/THF-mediated transformations, leaves little doubt that monomers are involved. Noting that sulfonates offer potential Na−X contacts in an S_{N}2 reaction less easily attained with alkyl halides, we offer computationally viable transition structures 14−16 as compatible with the THF-dependent selectivities. Computations predict the relative stabilities of 0, 2, and 4 kcal/mol for the transition structures 14, 15, and 16, respectively.

4-tert-Butylcyclohexyl bromides. Conformationally constrained cyclohexyl halides offer a pedagogically convenient means to underscore the importance of antiperiplanar (trans-diaxial) alignments in dehydrohalogenations. Ironically, we know of only one example of the elimination of a 4-tert-butylocyclohexene derivative with adequate isotopic labeling to demonstrate trans-diaxial elimination, and it was not a trivial analysis. Unexpectedly, NaDA/THF-mediated eliminations of both cis-17 and trans-17 afford 4-tert-butylocyclohexene (18, eq 14) in excellent yields with similar facilities ($k_{\text{cis}}/k_{\text{eq}} = 10^{-5}$). Mono- and tetradeuterated cyclohexyl bromides cis-17-d4, trans-17-d4, and cis-17-d4 were used to interrogate the kinetic isotope effects and isotopic distributions (Scheme 1). Elimination of the trans-17 isotopomers reveals geminal metalations to generate carbenoil intermediates, which are inserted into the proximate C−H(D) bonds. The cis-17 substrates follow a more traditional script for E2 elimination.

Scheme 1. Isotope Effects and Isotope Distributions for NaDA/THF-Mediated Elimination of the Isomers of 17 at −50 °C
Axial isomer cis-17 follows a half-order NaDA dependence (0.58 ± 0.08) and a second-order THF dependence in hexane (Figure 5, curve A), which becomes a first-order dependence when 2,5-Me2THF is used as the cosolvent (curve B).35 Thus, the preferred path is via a trisolvated monomer-based transition structure 19.

trans-17, bearing an equatorially disposed bromide, shows a first-order THF dependence (Figure 6), which, in conjunction with a half-order NaDA dependence, is consistent with the trisolvated monomer-based elimination (eq 5). Transition structure 20 is computationally viable and consistent with the rate data and isotopic studies. One might wonder why the axial isomer cis-17 does not also show a carbenoid behavior, especially because the calculated activation barriers for 19 and 20 are 7 and 4 kcal/mol higher (respectively) than that of 21.

exo-2-Halonorbornanes. Elimination of 2-bromo- and 2-chloronorbornanes (22 and 23, eq 15) at −40 and −20 °C respectively) shows nearly zeroth-order dependencies on THF even in hexane (Figure 7). This is consistent with syn elimination via the computationally viable transition structures 24 and 25.31,36,37

1-Bromocyclooctene. Elimination of 26 to give cyclooctyne (27) necessarily proceeds syn (Scheme 2). Cyclooctyne is not stable under the reaction conditions, cleanly isomerizing to cycloocta-1,2-diene (allene) 28 as a 2:1 mixture of symmetric and unsymmetric conformers, 28a and 28b, respectively (Figure 8). These conformers were decoalesced at −110 °C and characterized by a bevy of two-dimensional (2D-NMR spectroscopic methods (Supporting Information).38 As noted previously, 28 self-condenses when warmed to ambient temperatures to give a complex mixture that includes dimer 29 and a trimer (likely the Diels–Alder adduct of 29 and cyclooctyne). An independently prepared sample of 2731 reacts with NaDA analogously.

Figure 5. Plot of the initial rate196 versus [THF] for the dehydrobromination of cis-17 (0.050 M) with NaDA (0.10 M) at −50 °C in hexane (curve A) or 2,5-Me2THF (curve B). The curves depict unweighted least-squares fits. Curve A: $y = k[THF]^n$: $k = (3.23 \pm 0.01) \times 10^{-6}$; $n = 2.39 \pm 0.24$. Curve B: $y = k[THF]$: $k = (0.93 \pm 0.03) \times 10^{-4}$.

Figure 6. Plot of the initial rate196 versus [THF] for the dehydrobromination of trans-17 (0.050 M) with NaDA (0.13 M) at −25 °C in hexane (curve A) or 2,5-dimethyltetrahydrofuran (curve B). The curves depict unweighted least-squares fits. Curve A: $y = k[THF]^n$: $k = (2.22 \pm 0.2) \times 10^{-7}$; $n = 1.34 \pm 0.04$. Curve B: $y = k[THF]$: $k = (0.53 \pm 0.02) \times 10^{-4}$.

Figure 7. Plot of the initial rate196 versus [THF] in hexane for the dehydrobromination of exo-2-bromonorbornane 22 (0.040 M) with NaDA (0.10 M) at −40 °C. The curve depicts an unweighted least-squares fit to $y = k[THF] + k'$: $k = (2.6 \pm 0.5) \times 10^{-4}$; $k' = (2.2 \pm 0.3) \times 10^{-4}$.
Rate studies showed a rate-limiting dehydrohalogenation that necessarily proceeds via 27 rather than directly to allene 28.

\[\Delta G^\ddagger = +9.6 \text{ kcal/mol} \]
\[\Delta G^* = 0.0 \text{ kcal/mol} \]

Figure 8. Symmetric and unsymmetric conformers of cyclocta-1,2-diene (28a and 28b, respectively).

Figure 9. Plot of the initial rate versus [THF] for the dehydrobromination of 1-bromocyclooctene 26 (0.050 M) with NaDA (0.10 M) at −50 °C in (A) hexane and (B) 2,5-Me2THF. The curve depicts an unweighted least-squares fit. Curve A: \(y = k[\text{THF}] + k' \); \(k = 0.74 \pm 0.05 \times 10^{-3} \); \(k' = (1.90 \pm 0.05) \times 10^{-5} \). Curve B: \(y = k[\text{THF}] + k' \); \(k = 0.89 \pm 0.12 \) \times 10^{-5} \); \(k' = (2.61 \pm 0.03) \times 10^{-5} \).

Specifically, comparing 26 with 26-d431 affords \(k_{si}/k_D = 10 \). A linear THF dependence (Figure 9) in conjunction with a half-order dependence on NaDA (0.50 ± 0.07) are consistent with the generic mechanisms depicted in eqs 4 and 5. (The nonzero intercept is relatively minor.) The trisolvated-monomer-based transition structure 30 is computationally viable.

\[\text{trans-1-Bromo-2-methoxycyclohexane (31).} \]

Reaction of 31 (eq 16) cleanly affords the enol ether 32 to the exclusion of allylic ether 33 (20:1).44 This result contrasts with a reported \(t \)-BuOK-mediated elimination to give 33.45 Although it may be tempting to invoke a syn elimination, carbene 34 seems more plausible and has been shown to insert into the C–H bond geminal to the alkoxy moiety with high fidelity.46

\[\text{trans-1-Bromo-2-methoxycyclooctane (35).} \]

Dehydrohalogenation of 35 by \(t \)-BuOK/18-crown-6 is reported to give allylic ether 36,81 while NaNH2-mediated dehydrohalogenation yields 29 via the transiently stable cycloocta-1,2-diene (allene 28).41 These reports prompted us to examine the reactivity of NaDA/THF with 35. Treatment of 35 with excess NaDA/THF at −78 °C afforded, upon workup, dimer 29 along with other forms (see Scheme 2). Using only 0.80 equiv of NaDA to minimize allene 28 formation, we obtained 1-bromocyclooctene (26) in 62% isolated yield (eq 17). This unusual preferential elimination of the methoxy moiety has meager literature support.47–49

2-Phenyl-2-methoxy-1-bromoethane (37). Reaction of 37 with NaDA/THF was anticipated to provide enol ether 40 given the considerable acidity of the benzylic proton; however, phenylacetylene was formed instead (Scheme 3).50 Observation of vinyl bromide 39 at partial conversion, along with the failure of an independently prepared sample of enol ether 40 to give phenylacetylene under the reaction conditions, supports the mechanism as drawn.

■ CONCLUSIONS

Eliminations of a range of alkyl halides by NaDA in THF/hexane are facile and efficient. The dominance of monomer-based eliminations is a theme that continues from previous studies of NaDA-mediated metatalations.8,11 The absence of competing S_N2 substitution contrasts with the analogous reaction of 1-bromooctane with LDA/THF in which substitution and elimination pathways compete. The facile elimination of an equatorially disposed cyclohexyl bromide via a carbene-based pathway is also notable.33,34

Previous discussions of solvent effects on base-mediated eliminations are couched using the language of ion pairing.1b There is only limited attention to the role of aggregation,3 and solvation is described as bulk properties rather than as molecular phenomena. We trace rate changes to differential solvation numbers that affiliate with the absence or presence of Na–X contacts in the rate-limiting transition structures. The computed solvated transition structures show Na–X contacts, whereas the trisolvates are more variable. Overlaid on the primary-shell solvation reside sterically insensitive, secondary-shell effects that can be teased out using 2,5-Me2THF as a polar surrogate for hexane. Although the influences of these secondary-shell polarity effects on reaction rates seem small, the influence on the interpretation of the rate laws and mechanisms is far more consequential. Two important points are that (1) macroscopic...
solvation effects can be described in terms of separate contributions of primary and secondary shells, and (2) secondary-shell effects seem moderately more pronounced for NaDA than for LDA.

The ease of synthesis, physical properties, and reactivities of NaDA continue to support our assertion that NaDA is a long-overlooked base of considerable potential utility. We hope that NaDA continue to support our assertion that NaDA is a long-living base of considerable potential utility. We hope that NaDA will be considered by chemists as a safe and attractive alternative to LDA. The one notable limitation described herein is that NaDA has a higher reactivity than LDA.

EXPERIMENTAL SECTION

Reagents and Solvents. THF and hexane were distilled from blue or purple solutions containing sodium benzophenone ketyl. NaDA was prepared from sodium dispersion in N,N-dimethylethylamine (DMEA) using a modified procedure first reported by Wakefield and recrystallized from DMEA/hexane. Solutions of NaDA can be titrated using a literature method.52

NMR Spectroscopic Analyses. An NMR tube under vacuum was filled with argon, placed in a −78 °C freezer, and dried over Na2SO4. Evaporation of the solvent, followed by flash chromatography of the resulting crude residue using neat hexane as an eluent, afforded a 18% yield. Cycloocta-1,2-diene (28a). Allene 28a, contaminated by 20% of a minor conformer 28b, was prepared from cyclooctyne using the general procedure for NMR spectroscopic analysis using 0.25 equiv of NaDA in neat THF-d8. The NMR spectroscopic data recorded at −110 °C for the major isomer, 28a, is as follows: 1H NMR (500 MHz, THF-d8): δ 5.3 (m, 1H), 5.11 (t, J = 6.1 Hz, 1H), 2.29 (dd, J = 20.2 Hz, 14.4 Hz, 1H), 2.01 (dd, J = 10.0, 8.0 Hz, 1H), 1.91–1.95 (m, 2H), 1.78–1.81 (m, 3H), 1.33 (q, J = 14.5 Hz, 1H), 1.29 (t, J = 16.2 Hz, 1H), 0.84 (t, J = 16.2 Hz, 1H). 13C NMR (73.57 MHz, THF-d8): δ 208.6, 95.1, 90.5, 33.4, 31.6, 30.1, 29.1, and 27.4. Note: the multiplicities were derived from 2D 1H/13C HSQC experiments and represent approximate multiplet structure. J values smaller than 6 Hz could not be resolved.

ASSOCIATED CONTENT

Supporting Information

The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acs.joc.9b01428.

NMR spectroscopic studies; 1H NMR spectrum of 1-octene (28a) and THF-d8; spectroscopic rate; and computational data (PDF)

AUTHOR INFORMATION

Corresponding Author

E-mail: dbc6@cornell.edu.

ORCID

David B. Collum: 0000-0001-6065-1655

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

We thank the National Institutes of Health (GM131713) for support.

REFERENCES

(3) “Associated” forms (aggregates) in alkoxide-mediated metalations have been discussed in the context of reported fractional reaction orders. See ref 1b.

(13) We define the idealized rate law as that obtained by rounding the observed reaction orders to the nearest rational order.

(15) NaDA has a half-life of 1.0 h at 25 °C in THF. By contrast, NaDA in 5.0 M 2,5-dimethylfetrahydrofuran/THF decomposes with a half-life of 2–3 h at 0 °C.

(17) From Wikipedia, an isodesmic reaction is a chemical reaction in which the type of chemical bonds broken in the reactant are the same as the type of bonds formed in the reaction product.

(32) For examples of eliminations of equatorial halides see ref 1b and 21.

(35) Before fully appreciating the importance of secondary shell solvation effects, with considerable effort we located a computationally viable transition structure bearing four coordinated THF ligands. We originally assumed the difficulties underscored the limitations of DFT in sterically congested cases.

(36) For leading references to base-mediated eliminations of norbornyl halides, see ref 31 as well as Bartsch, R. A.; Lee, J. G. Stereochemistry of Base-Promoted 1,2-Elimination from Norbornyl Halides, see ref 31 as well as Bartsch, R. A.; Lee, J. G. Stereochemistry of Base-Promoted 1,2-Elimination from Norbornyl Halides: A Novel Diazo Decomposition Process. Tetrahedron Lett. 2005, 46, 8873.

(38) Yavari carried out essentially the same force field calculations on 28 almost four decades ago. The final line of his paper suggests that the substantial calculated barrier (8.8 kcal/mol) "makes a dynamic nuclear magnetic resonance spectroscopic study...quite attractive." We inadvertently took his cue. Yavari, I. Conformational Energy Surface of 1,2-Cyclooctadiene. J. Mol. Struct. 1980, 65, 169.

(48) As a humorous aside, 35 was contaminated with significant concentrations of trans-4-bromo-1-methoxyoctococane (i) see ref 38. Thinking we had isolated the cis-1-bromo-2-methoxyoctococane (ii)—those things happen—we proceeded to dehydrohalogenate it to give cyclooctenes iii. Inspired by numerous transannular effects of cyclooctanes (see ref 49), with help from a colleague we concocted a homodehydrobromination via transition structure iv. Although fictional, iv is also computationally viable.