Getting plants off to a good start will pay big dividends later when strawberry plants must deal with the stresses of weather and pests. Among the most important steps in site preparation is the elimination of perennial weeds. Few herbicides are labeled for use in established strawberries, and their activity on perennial weeds is limited. Therefore, weeds are most effectively controlled before planting.

Weeds
Weeds cause a greater economic loss than diseases and insects combined. In addition, weeds also encourage the establishment of other pest populations. Eliminating weeds the year before planting is much easier than controlling them later. Too many growers plant directly into a site in which perennial weeds were not eliminated the previous summer, and then spend the next several years trying to find the right combination of herbicides to undo the damage.

Rotation, coupled with the use of a broad-spectrum post-emergent herbicide the summer before planting, is an effective approach. Cover cropping the site again after the herbicide application will further suppress weed growth. Repeated cultivation or covering a site with black plastic for several months are also effective approaches. Growers should begin site preparation 2 or 3 years before the crop is planted to eliminate perennial weeds, especially if organic methods are to be used.

Fumigation at high rates will suppress weeds, although its use worldwide will likely be restricted because of environmental concerns, availability and expense. In some situations, nematodes, soil diseases, soil insects or intense weed pressure may justify fumigation. The soil should be friable, warm (>50°F) and without decomposing plant material for fumigation to work properly. The best time to fumigate a strawberry field is late summer or early fall of the year prior to planting.

Nutrient amendments
Test the soil for pH, potassium, phosphorus, magnesium, calcium and boron. Sample soil in a V-shape pattern within the field, collecting from at least 10 locations. The sample should represent the profile of the top 10 - 12 inches. Plow the site, add the recommended amount of nutrients, then disc. Because soil testing procedures are not standardized across the region, follow the
recommendations from the laboratory where the samples were analyzed. Do not use the test results from one laboratory and the sufficiency ranges from another.

It takes one year for lime to raise, and for sulfur to lower the soil pH, so it is necessary to apply these one year in advance of planting. The more finely ground the sulfur or lime, the faster it will react with the soil.

If the soil pH must be increased, a liming agent such as calcite or dolomite should be applied. Liming agents differ from one another in two important characteristics which influence their effectiveness: 1) chemical composition which affects acid neutralizing potential and fertilizer value and 2) particle size which determines liming efficiency and ease of application. Consider the relative importance of these when selecting a liming agent. For example, even though dolomite has a lower neutralizing value than calcite, it is often used at sites which require supplemental magnesium for adequate fertility. Moreover, finely ground lime is more difficult to apply than coarse particles, but it changes the soil pH more quickly.

Sulfur is effective at lowering soil pH, but time is required for bacteria to oxidize the sulfur into a usable form. Sulfur comes as a wettable powder or prills, with the former reacting faster to lower the soil pH. Aluminum sulfate is sometimes recommended for acidification because it provides an already oxidized form of sulfur, but it is expensive and six times as much is required to do the same job as sulfur. Also, aluminum toxicity can occur with large amounts of aluminum sulfate, so we do not recommend it.

Certain nutrients, like phosphorus, are very insoluble in water and move very slowly through the soil. It may take years for phosphorus applied to the soil surface to reach the root zone of the plant and be taken up. For this reason it is imperative to apply a sufficient amount prior to planting and mix it into the root zone.

Animal manures and legumes offer a good source of slowly released nitrogen when incorporated prior to planting. Animal manures are a potential source of weed seeds, however. Manure applied to fields should be well-composted and worked into the soil prior to planting to minimize any risk of fruit contamination from pathogenic bacteria.

Irrigation
The irrigation system should be in place prior to planting because transplants probably will require immediate watering. Any preemergent herbicide applied after transplanting will need to be watered in by rain or irrigation to be effective. For these reasons, the irrigation system should be operational prior to planting. Also, in early spring, the irrigation system will be a necessary tool for frost protection.
Preplant cover crops
Seeding a cover crop on the site the year before planting is an excellent way to improve soil structure, suppress weeds, and if the proper cover crop is grown, suppress nematode populations. Benefits of a cover crop are greatest when the soil is sandy and/or the soil organic matter content is low. Most cover crops grow under the same soil conditions as strawberries. Except for additional nitrogen (40 lb/A prior to seeding) and perhaps phosphorus, other amendments are not likely to be required.

Minimum seeding rates are used when the objective is to supply an acceptable stand for harvesting the grain or straw. But when a vigorous, dense stand is desired for weed suppression and organic matter, higher seeding rates are recommended.

Preplant cover crops are usually plowed under in the late fall or early spring prior to planting. Those with low nitrogen contents (grains and grasses) should be plowed under early in the fall to allow adequate time for decomposition, unless the soil and site are prone to erosion. Legumes contain more nitrogen and decompose quickly, so they can be turned under within a month of planting. Many plant species are suitable as preplant cover crops, and each has certain advantages. In some cases, mixtures of crops are used to realize the benefits of both.

The Strawberry Production Guide (NRAES-88) provides many details on site selection and preparation, and on suitable preplant cover crops for the strawberry planting.