10-23-17

Aim: SWBAT identify exponents, powers, and bases AND evaluate expressions with exponents.

HW: Packet Pg. 5

Do Now: Write your name on the Unit 3 Packet

AIM: SWBAT identify exponents, powers and bases, and evaluate expressions using exponents.

Quick Review of Exponents

Base The factor used in repeated multiplication

The exponent is _

25 expressed in standard form is _

The powers 5^2 , 9^3 , and 8^4 are read as follows.

52 five to the second power or five squared

93 nine to the third power or nine cubed

84 eight to the fourth power

Examples:

Write each of the following as a product of the same factor.

 $b^3 = \frac{b \cdot b \cdot b}{(-1.5)^4}$

$$6 \cdot 6 = 6^2$$

Solve each equation. Express your answer in standard form.

$$x = 4^2$$

2)
$$z = 7^3$$

$$y = (-3)(-3)(-3)(-3)$$

4)
$$z = \left(\frac{2}{3}\right)^3$$

$$Z = \frac{2}{3} \cdot \frac{2}{3} \cdot \frac{2}{3}$$

$$Z = \frac{8}{3}$$

* 5)
$$x = (-5)^2$$

$$\chi = (-5)(-5)$$

$$\chi = 25$$

If n is a positive even number, will (-55)ⁿ be positive or negative? Positive

If n is a positive odd number, will (-3.5)ⁿ be positive or negative?

Negative

**Any number to the zero power (except 0) is one.

Examples: 9° = ______ 1.2° = _____ (-110)° = _____ 0° = _____ 6° red

***Any number to the first power is equal to itself.

Examples: $9^1 = 9$ 6.23¹= 6.23 $\left(\frac{3}{5}\right)^1 = \frac{3}{5}$

$$\left(\frac{3}{5}\right)^1 = \frac{3}{5}$$

Classwork.

Write each product using exponents:

$$\chi^2 y^5$$

4)
$$\frac{11}{5} \cdot \frac{11}{5} \cdot \frac{11}{5}$$

Write each power as a product of the same factor:

Evaluate each expression. When you replace a variable that has an exponent put it in parenthesis.

 n^2 if n = 5

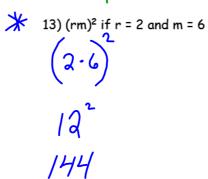
7)
$$8x^3$$
 if $x = -3$

9)
$$4x^2$$
 if $x = \frac{1}{2}$

 $(5)^2$

30000

2


Evaluate each expression:

10)
$$x^4$$
 if $x = -\frac{2}{5}$

$$\left(-\frac{2}{5}\right)^4$$

$$\frac{16}{5}$$

12)
$$3m^2y^3$$
 if $m = 5$ and $y = 3$
 $3 \cdot m^2 \cdot y^3$
 $3 \cdot (5)^2 \cdot (3)^3$
 $3 \cdot 25 \cdot 27$
 2025

14) Rewrite 8 as a power of 2 $\frac{3}{2}$

15) Rewrite 9 as a power of 3 3^2

16) Rewrite 81 as a power of 3

HW: Using Exponents

Write each product using exponents:

Express each of the following as a standard numeral:

8)
$$\left(\frac{1}{5}\right)^3$$
 9) 125°

Determine whether each sentence is true or false.

10)
$$2^{10} > 10^2$$

11)
$$9^8 > 8^9$$

11)
$$9^8 > 8^9$$
 12) $2^4 = 4^2$ 13) $2^3 \neq 3^2$

13)
$$2^3 \neq 3^3$$

Evaluate each expression:

14)
$$x^3$$
 if $x = -6$

14)
$$x^3$$
 if $x = -6$ 15) $4r^3$ if $r = 3$ 16) $(xy)^3$ if $x = \frac{1}{5}$ and $y = 10$

- 17) Write an expression with (-1) as its base that will produce a positive product.
- 18) Write an expression with (-1) as its base that will produce a negative product.
- 19) Tim wrote 16 as (-2)4. Is he correct? Explain why or why not.

Rewrite each of the following numbers in exponential notation using a base of 2.

20) 8

21) 32

22) 128