Use the fraction bar below for Exercises 1–4.

1. Label the first part of this fraction bar with the correct unit fraction.

2. Circle the first four parts of the bar. What fraction of the whole does this circled portion represent?

3. Write your fraction from Exercise 2 as a sum of unit fractions.

4. Represent the whole as the sum of the unit fractions.

5. Solve the problem below by circling parts of the fraction bar. Write the appropriate equation below the bar.

Brett is building a fence around his yard. He has worked on it for two weeks so far. He finished \(\frac{2}{8} \) the first week and \(\frac{3}{8} \) the second week. What fraction of the entire fence has he built?

6. Nena thinks that because 4 < 6, it must also be true that \(\frac{1}{4} < \frac{1}{6} \). Explain to Nena why this is incorrect.
List all the factors of each number.

1. 16 ________________
2. 29 ________________
3. 33 ________________
4. 40 ________________

List the first four multiples of each number.

5. 6 ________________
6. 11 ________________
7. 15 ________________
8. 1 ________________

Complete.

9. \(\frac{1}{3} + \frac{1}{3} = \) ____________
10. \(\frac{2}{7} + \frac{3}{7} = \) ____________
11. \(\frac{6}{10} - \frac{5}{10} = \) ____________
12. \(\frac{4}{6} + \frac{2}{6} = \) ____________
13. \(\frac{4}{9} - \frac{2}{9} = \) ____________
14. \(\frac{1}{10} + \frac{1}{10} + \frac{1}{10} = \) ____________

Write an equation. Then solve the problem.

15. Maggie has a ribbon 27 feet long. What is the length of the ribbon in yards?
 Equation: ________________
 Answer: ________________

16. Mañuel has 15 goldfish. This is 6 more than Quinn has. How many goldfish does Quinn have?
 Equation: ________________
 Answer: ________________

17. In their yearbook photo, students in the chorus stood in four rows with 13 students in each row. How many students are in the photo?
 Equation: ________________
 Answer: ________________

18. Julie bought 19 beads at the craft store. Now she has 36 beads. How many beads did she have before she went to the craft store?
 Equation: ________________
 Answer: ________________

19. Stretch Your Thinking Rashid bought some baseball cards. After giving 7 cards to his friend Grace, he arranged the remaining cards in 6 rows of 4. How many cards did he buy?
 Equation: ________________
 Answer: ________________
1. Write a chain of equivalent fractions for the shaded parts.

\[
\frac{1}{2} = \frac{2}{4} = \frac{3}{6} = \frac{4}{8} = \frac{5}{10} = \frac{6}{12}
\]

Use the number lines to complete Exercises 2–7.

Fourths

\[
\begin{array}{cccccc}
0 & 1 & 2 & 3 & 4 \\
\frac{0}{4} & \frac{1}{4} & \frac{2}{4} & \frac{3}{4} & \frac{4}{4}
\end{array}
\]

Eighths

\[
\begin{array}{cccc}
0 & 2 & 4 & 6 \\
\frac{0}{8} & \frac{2}{8} & \frac{4}{8} & \frac{6}{8}
\end{array}
\]

Twelfths

\[
\begin{array}{cccc}
0 & 3 & 6 & 9 \\
\frac{0}{12} & \frac{3}{12} & \frac{6}{12} & \frac{9}{12}
\end{array}
\]

2. What fraction is marked by the star? \[\frac{3}{8}\]

3. What fraction is marked by the heart? \[\frac{3}{4}\]

4. If you have \[\frac{3}{4}\] cup of flour, how many eighths do you have? \[\frac{6}{8}\]

5. If you have \[\frac{3}{12}\] of an orange, how many fourths do you have? \[\frac{3}{4}\]

6. Which is greater, \[\frac{3}{4}\] or \[\frac{10}{12}\]? \[\frac{3}{4}\]

7. Give two equivalent fractions for \[\frac{6}{8}\]. \[\frac{3}{4}, \frac{12}{16}\]
Add or subtract.

1. \(4,560 + 52,973 = \)
2. \(581,002 + 26,596 = \)
3. \(4,300,129 + 3,426 = \)
4. \(398,000 - 213,546 = \)

5. Solve the problem below by circling parts of the fraction bar. Write the appropriate equation below the bar.

Molly is driving across the country. She covered \(\frac{2}{10}\) of the distance on the first day and \(\frac{3}{10}\) on the second day. What fraction of the distance did she cover in the first two days?

Complete.

6. \(\frac{1}{8} + \frac{1}{8} + \frac{1}{8} + \frac{1}{8} = \)
7. \(\frac{7}{10} + \frac{3}{10} = \)
8. \(\frac{4}{5} - \frac{1}{5} = \)
9. \(\frac{8}{10} + \)
10. \(\) + \(\frac{2}{3} = 1\)
11. \(1 - \frac{3}{4} = \)

12. **Stretch Your Thinking** Alyssa said that \(\frac{6}{8}\) and \(\frac{9}{12}\) are not equivalent because there is no whole number you can multiply both parts of \(\frac{6}{8}\) by to get \(\frac{9}{12}\). Is she correct? Explain.
1. Write a chain of equivalent fractions for the shaded parts.

\[\frac{2}{4} = \frac{3}{6} = \frac{4}{8} = \frac{5}{10} = \frac{6}{12} \]

Write the multiplier or divisor for each pair of equivalent fractions.

2. \(\frac{4}{12} = \frac{1}{3} \)
 - Divisor = _____

3. \(\frac{2}{9} = \frac{6}{27} \)
 - Multiplier = _____

5. \(\frac{3}{10} = \frac{15}{50} \)
 - Multiplier = _____

6. \(\frac{21}{56} = \frac{3}{8} \)
 - Divisor = _____

8. \(\frac{4}{16} = \frac{1}{4} \)
 - Divisor = _____

9. \(\frac{5}{9} = \frac{25}{45} \)
 - Multiplier = _____

11. \(\frac{3}{7} = \frac{18}{42} \)
 - Multiplier = _____

12. \(\frac{24}{56} = \frac{3}{7} \)
 - Divisor = _____

Complete each exercise about the pairs of fraction bars.

14. What equivalent fractions are shown? _________

15. Identify the multiplier. _________

16. What equivalent fractions are shown? _________

17. Identify the divisor. _________

18. Write a chain with at least six equivalent fractions.
 _________ = _________ = _________ = _________ = _________ = _________
In Exercises 1–3, use this fraction bar.

1. Shade two of the equal parts. What fraction does the shaded portion model?

2. Split each equal part (each unit fraction) into two equal parts. What fraction does the shaded portion model now?

3. Fill in the boxes to show how you unsimplified the original fraction.

\[
\begin{align*}
2 & \times \quad \quad = \\
3 & \times \quad \\
\end{align*}
\]

Solve.

4. A restaurant has 60 plates. One night, 9 groups of 6 people ate dinner at the restaurant at the same time. How many plates were not used by these diners?

5. Clara has a garden that is 7 feet wide and 4 feet long. She has 30 tomato plants to put in the garden. Each plant needs 1 square foot of space. How many leftover plants will Clara have?

6. Stretch Your Thinking Carol’s bookshelf has 4 shelves with 6 books on each. Her brother Robert has 3 shelves with 7 books on each. They want to combine their books. If they put 9 books on a shelf, how many shelves will they need?
Compare.

1. $\frac{5}{8} \bigcirc \frac{5}{9}$
2. $\frac{1}{5} \bigcirc \frac{1}{4}$
3. $\frac{2}{5} \bigcirc \frac{3}{5}$
4. $\frac{6}{8} \bigcirc \frac{2}{3}$
5. $\frac{10}{11} \bigcirc \frac{11}{12}$
6. $\frac{3}{8} \bigcirc \frac{5}{12}$
7. $\frac{5}{12} \bigcirc \frac{4}{7}$
8. $\frac{1}{3} \bigcirc \frac{4}{9}$
9. $\frac{1}{4} \bigcirc \frac{2}{9}$
10. $\frac{1}{12} \bigcirc \frac{1}{15}$
11. $\frac{7}{10} \bigcirc \frac{11}{15}$
12. $\frac{12}{25} \bigcirc \frac{51}{100}$

Solve.

13. During his first season on the school football team, Wade made 5 of the 9 field goals he tried. During his second season, he made 11 of the 15 field goals he tried. In which season did he make the greater fraction of the field goals he tried?

14. Mañuela bought $\frac{11}{12}$ yard of polka dot fabric and $\frac{7}{9}$ yard of flowered fabric. Which fabric did she buy more of?

15. Of the 7 pens in Ms. Young’s desk, 3 are blue. Of the 9 pens in Mr. Fox’s desk, 5 are blue. Which teacher has a greater fraction of pens that are blue?

16. Mr. Sommers spent 10 minutes of his 50-minute math period reviewing homework. Mr. Young spent 12 minutes of his 60-minute math period reviewing homework. Which teacher spent a greater fraction of his math period reviewing homework?
Complete.

1. \(\frac{1}{4} + \frac{1}{4} + \frac{1}{4} = \) _________

2. \(\frac{8}{9} - \frac{4}{9} = \) _________

3. \(\frac{4}{5} + \frac{1}{5} = \) _________

4. \(\frac{3}{8} + \frac{3}{8} = \) _________

Write the multiplier or divisor for each pair of equivalent fractions.

5. \(\frac{5}{6} = \frac{10}{12} \)
 Multiplier = _______ Divisor = _______

6. \(\frac{12}{15} = \frac{4}{5} \)
 Multiplier = _______ Divisor = _______

7. \(\frac{3}{4} = \frac{18}{24} \)
 Multiplier = _______

8. \(\frac{25}{50} = \frac{5}{10} \)
 Divisor = _______

9. \(\frac{1}{4} = \frac{7}{28} \)
 Multiplier = _______

10. \(\frac{11}{22} = \frac{1}{2} \)
 Divisor = _______

Complete the chain of equivalent fractions.

11. \(\frac{2}{5} = \) ______ = ______ = ______ = ______ = ______ = ______

12. \(\frac{5}{9} = \) ______ = ______ = ______ = ______ = ______ = ______

Solve.

13. **Stretch Your Thinking** Harry ate \(\frac{4}{8} \) of a large pizza. Aidan ate \(\frac{1}{2} \) of a small pizza. Harry said that since \(\frac{4}{8} \) is equivalent to \(\frac{1}{2} \), he and Aidan ate the same amount of pizza. Is he correct? Explain.

Name the mixed number shown by the shaded parts.

1. ________
2. ________
3. ________

Write the mixed number as a fraction.

4. \(2\frac{1}{3} = \) ________
5. \(4\frac{2}{5} = \) ________
6. \(3\frac{3}{4} = \) ________
7. \(1\frac{5}{8} = \) ________

Write the fraction as a mixed number.

8. \(\frac{7}{6} = \) ________
9. \(\frac{8}{3} = \) ________
10. \(\frac{9}{2} = \) ________
11. \(\frac{10}{7} = \) ________

Complete. Give the answer as a mixed number.

12. \(\frac{3}{5} + \frac{4}{5} = \) ________
13. \(\frac{6}{4} + \frac{3}{4} = \) ________

14. \(\frac{2}{9} + \frac{8}{9} = \) ________
15. \(7 + \frac{2}{3} = \) ________

Solve.

16. Alicia walked \(\frac{7}{8}\) mile on Saturday and \(\frac{6}{8}\) mile on Sunday. How far did she walk over the weekend? Give the answer as a mixed number.

\[\frac{7}{8} + \frac{6}{8} = \] ________

17. The dark chain is \(\frac{5}{12}\) yard long. The light one is \(\frac{9}{12}\) yard long. How long will they be if they are joined? Give the answer as a mixed number.

\[\frac{5}{12} + \frac{9}{12} = \] ________
Solve.

1. The dog has gone \(\frac{5}{8} \) of the way across the yard. How much farther does it have to go to reach the gate?

2. The cat has gone \(\frac{7}{16} \) of the way across the yard. How much farther does it have to go to reach the gate?

3. I cleaned \(\frac{6}{9} \) of my room, and my friend cleaned \(\frac{2}{9} \) of my room. How much of my room do we still have to clean?

4. Mrs. Spencer’s class is signing up to play sports. \(\frac{8}{26} \) of the students want to play soccer and \(\frac{12}{26} \) want to play basketball. The rest of the students want to play baseball. What fraction of the students wants to play baseball?

Compare.

5. \(\frac{2}{6} \bigcirc \frac{1}{6} \)

6. \(\frac{4}{9} \bigcirc \frac{4}{10} \)

7. \(\frac{7}{12} \bigcirc \frac{13}{24} \)

8. \(\frac{3}{5} \bigcirc \frac{1}{3} \)

9. \(\frac{4}{6} \bigcirc \frac{6}{9} \)

10. \(\frac{4}{5} \bigcirc \frac{5}{6} \)

11. \(\frac{7}{12} \bigcirc \frac{3}{4} \)

12. \(\frac{3}{5} \bigcirc \frac{4}{9} \)

13. \(\frac{7}{9} \bigcirc \frac{7}{8} \)

14. Stretch Your Thinking Find two fractions that are between \(\frac{3}{5} \) and \(\frac{4}{5} \).

© Houghton Mifflin Harcourt Publishing Company
Add or subtract.

1. \(\frac{3}{5} + \frac{4}{5} \)
2. \(\frac{6}{4} + \frac{3}{4} \)
3. \(4\frac{2}{9} + 2\frac{7}{9} \)

4. \(1\frac{7}{8} + 3\frac{3}{8} \)
5. \(1\frac{7}{9} - \frac{4}{9} \)
6. \(4\frac{6}{7} - 2\frac{5}{7} \)

7. \(6\frac{4}{5} - 3\frac{2}{5} \)
8. \(25\frac{5}{8} - 10\frac{1}{8} \)
9. \(4\frac{1}{2} + 5\frac{1}{2} \)

10. \(3\frac{1}{7} + 2\frac{1}{7} \)
11. \(1\frac{5}{7} + 1\frac{3}{7} \)
12. \(50\frac{1}{3} + 50\frac{1}{3} \)

13. \(2 - \frac{1}{3} \)
14. \(5\frac{3}{8} - 2\frac{7}{8} \)
15. \(2\frac{1}{6} - 1\frac{5}{6} \)

Solve.

16. I made a clay snake 9\(\frac{5}{8} \) inches long, but a section 1\(\frac{7}{8} \) inches long broke off. How long is the snake now?

17. A group of campers hiked for 5\(\frac{3}{4} \) hours today and 6\(\frac{3}{4} \) hours yesterday. How many hours did they hike in all?

18. Deacon had 12\(\frac{1}{3} \) ounces of juice, but he drank 3\(\frac{2}{3} \) ounces. How much juice is left?
Complete to form equivalent fractions.

1. \(\frac{1}{2} = \frac{4}{\square} \)
2. \(\frac{12}{\square} = \frac{4}{5} \)
3. \(\frac{6}{7} = \frac{\square}{28} \)
4. \(\frac{4}{\square} = \frac{\square}{9} \)
5. \(\frac{25}{100} = \frac{\square}{\square} \)
6. \(\frac{\square}{8} = \frac{3}{\square} \)

Compare.

7. \(\frac{3}{10} \bigcirc \frac{3}{8} \)
8. \(\frac{4}{5} \bigcirc \frac{5}{6} \)
9. \(\frac{5}{7} \bigcirc \frac{2}{3} \)
10. \(\frac{5}{6} \bigcirc \frac{19}{24} \)
11. \(\frac{4}{15} \bigcirc \frac{3}{10} \)
12. \(\frac{1}{49} \bigcirc \frac{1}{50} \)

Solve.

13. Rosa got 5 out of 7 answers correct on her science quiz. Her older sister Ana got 4 answers out of 6 correct on her science quiz. Which sister answered a greater fraction of the questions correctly?

14. The number 85% is equivalent to the fraction \(\frac{85}{100} \). Pablo spelled 21 out of 25 words correctly on his spelling test. Is this more or less than 85% of the words?

15. Stretch Your Thinking Marla ate \(\frac{3}{8} \) of a small pepperoni pizza and \(\frac{2}{8} \) of a small cheese pizza. Damien ate \(\frac{3}{12} \) of a small veggie pizza and \(\frac{5}{12} \) of a small mushroom pizza. Who ate a greater fraction of a whole pizza?
Add.
1. \(\frac{1}{3} + \frac{1}{2} \)
2. \(\frac{7}{10} + \frac{1}{5} \)
3. \(\frac{2}{9} + \frac{1}{6} \)
4. \(\frac{5}{32} + \frac{1}{4} \)
5. \(\frac{1}{6} + \frac{2}{3} \)
6. \(\frac{5}{11} + \frac{1}{2} \)
7. \(\frac{3}{16} + \frac{3}{4} \)
8. \(\frac{3}{7} + \frac{1}{3} \)
9. \(\frac{5}{12} + \frac{3}{8} \)

Solve.

10. Of the people who attended the school play, \(\frac{5}{12} \) were students and \(\frac{1}{8} \) were teachers. What fraction of the total audience were students or teachers?

11. Mara bought \(\frac{2}{3} \) yard of yellow ribbon and \(\frac{1}{4} \) yard of blue ribbon. How many yards of ribbon did she buy altogether?

12. For breakfast, Oliver drank \(\frac{5}{16} \) of a pitcher of juice. His brother Joey drank \(\frac{3}{8} \) of the pitcher of juice. What fraction of a pitcher did they drink together?

13. A recipe calls for \(\frac{1}{3} \) cup of brown sugar and \(\frac{3}{4} \) cup of white sugar. How much sugar is this altogether?
Solve for \(n\) or \(d\).

1. \(\frac{1}{6} = \frac{n}{24}\)
2. \(\frac{3}{4} = \frac{15}{d}\)
3. \(\frac{9}{54} = \frac{1}{d}\)
4. \(\frac{10}{18} = \frac{n}{9}\)
5. \(\frac{3}{7} = \frac{18}{d}\)
6. \(\frac{3}{5} = \frac{n}{40}\)
7. \(\frac{27}{36} = \frac{n}{4}\)
8. \(\frac{14}{49} = \frac{2}{d}\)
9. \(\frac{5}{6} = \frac{n}{48}\)
10. \(\frac{1}{3} = \frac{20}{d}\)
11. \(\frac{21}{56} = \frac{3}{d}\)
12. \(\frac{20}{25} = \frac{n}{5}\)

Add or subtract.

13. \(1\frac{1}{3} + 2\frac{1}{3}\)
14. \(3\frac{3}{5} - 1\frac{1}{5}\)
15. \(6\frac{3}{8} + 3\frac{5}{8}\)
16. \(6\frac{3}{8} - 3\frac{5}{8}\)
17. \(1\frac{5}{6} + 2\frac{5}{6}\)
18. \(7 - 5\frac{1}{4}\)

Compare.

19. \(\frac{3}{4} \bigcirc \frac{6}{7}\)
20. \(\frac{7}{15} \bigcirc \frac{2}{5}\)
21. \(\frac{1}{8} \bigcirc \frac{3}{20}\)
22. \(\frac{6}{100} \bigcirc \frac{6}{101}\)
23. \(\frac{19}{20} \bigcirc \frac{20}{21}\)
24. \(\frac{4}{5} \bigcirc \frac{7}{9}\)

Solve.

25. In a hockey game, Seth took 12 shots and scored 3 times. Zak took 10 shots and scored twice. Who scored on a greater fraction of his shots?

26. Jia rode her bike \(7\frac{7}{8}\) miles in the morning and another \(6\frac{5}{8}\) miles in the afternoon. How many miles did she ride altogether?

27. **Stretch Your Thinking** Last season, Jenny made 3 out of every 4 free throws she took. If she took 48 free throws, how many did she make?
Subtract.

1. \(\frac{1}{3} - \frac{1}{7} \)
2. \(\frac{4}{5} - \frac{8}{15} \)
3. \(\frac{5}{6} - \frac{2}{9} \)

4. \(\frac{61}{100} - \frac{7}{25} \)
5. \(\frac{4}{7} - \frac{1}{6} \)
6. \(\frac{6}{11} - \frac{1}{2} \)

Circle the greater fraction. Then write and solve a subtraction problem to find the difference of the fractions.

7. \(\frac{9}{10} \) \(\frac{11}{12} \)
8. \(\frac{5}{18} \) \(\frac{1}{3} \)

Solve.

9. Marly passes the library on her way to school. The distance from Marly’s house to the library is \(\frac{3}{8} \) mile. The distance from Marly’s house to the school is \(\frac{4}{5} \) mile. How far is it from the library to Marly’s school?

10. Tim spends about \(\frac{1}{3} \) of each weekday sleeping and about \(\frac{7}{24} \) of each weekday in school.

 a. What fraction of a weekday does Tim spend either sleeping or in school?

 b. Is this more or less than \(\frac{1}{2} \) a day?

 c. How much more or less?
Write each fraction as a mixed number.

1. \(\frac{11}{5} = \) ________
2. \(\frac{21}{8} = \) ________
3. \(\frac{57}{6} = \) ________

Write each mixed number as a fraction.

4. \(1 \frac{5}{6} = \) ________
5. \(11 \frac{2}{3} = \) ________
6. \(6 \frac{1}{9} = \) ________

Add or subtract.

7. \(\frac{3}{7} + \frac{2}{7} \)
8. \(\frac{7}{10} - \frac{3}{10} \)
9. \(\frac{3}{10} + \frac{2}{5} \)

10. \(2 \frac{1}{6} + 3 \frac{5}{6} \)
11. \(6 \frac{11}{12} - 2 \frac{5}{12} \)
12. \(5 \frac{1}{3} - 1 \frac{2}{3} \)

13. \(4 \frac{3}{4} + 4 \frac{3}{4} \)
14. \(4 - 3 \frac{5}{8} \)
15. \(\frac{3}{11} + \frac{1}{3} \)

Solve.

16. Ayala and Sam were partners on a science project. Ayala spent \(2 \frac{3}{4} \) hours working on the project. Sam spent \(1 \frac{3}{4} \) hours working on the project. How long did they work altogether?

17. **Stretch Your Thinking** Marti grouped all her CDs into separate categories. She said, “\(\frac{2}{5} \) of my CDs are rock music, \(\frac{1}{6} \) are jazz, \(\frac{1}{3} \) are hip hop, and \(\frac{1}{4} \) are country music.” Explain why Marti’s statement cannot be correct.
Add or subtract.

1. \[7 \frac{1}{2} + 6 \frac{5}{8} = \]
2. \[2 \frac{3}{5} + 5 \frac{1}{4} = \]
3. \[5 \frac{3}{8} + 2 \frac{3}{4} = \]

4. \[3 \frac{4}{15} - 1 \frac{1}{5} = \]
5. \[9 \frac{5}{6} - 4 \frac{1}{8} = \]
6. \[1 \frac{1}{9} + 3 \frac{5}{8} = \]

7. \[8 \frac{1}{6} - 2 \frac{7}{12} = \]
8. \[6 \frac{7}{9} - 4 \frac{2}{3} = \]
9. \[3 \frac{9}{14} - 1 \frac{2}{7} = \]

Solve.

10. Last year my elm tree was \(8 \frac{5}{6}\) feet tall. This year it is \(10 \frac{1}{12}\) feet tall. How much did it grow in one year?

11. Luis rode his bicycle \(2 \frac{3}{10}\) miles before lunch. He rode \(1 \frac{1}{4}\) miles after lunch. How far did Luis ride altogether?

12. Carrie spent \(2 \frac{1}{2}\) hours trimming bushes and \(1 \frac{1}{4}\) hours weeding the garden. She is supposed to work in the yard for 5 hours. How much longer does she need to work?
Add or subtract. Try to do these in your head.

1. \(\frac{3}{4} + \frac{3}{4} = \) \(\frac{3}{2} + \frac{4}{5} = \)
2. \(\frac{2}{4} - \frac{1}{4} = \)
3. \(\frac{5}{2} + \frac{4}{5} = \)
4. \(\frac{6}{7} - \frac{5}{2} = \)
5. \(\frac{8}{3} + \frac{1}{3} = \)
6. \(\frac{5}{6} - \frac{1}{7} = \)
7. \(\frac{3}{5} + \frac{3}{5} = \)
8. \(\frac{7}{8} - \frac{3}{8} = \)
9. \(\frac{3}{8} + \frac{5}{8} = \)

Write the fractions in order from least to greatest.

10. \(\frac{1}{9}, \frac{1}{3}, \frac{1}{6}, \frac{1}{2} \)
11. \(\frac{4}{9}, \frac{2}{9}, \frac{8}{9}, \frac{1}{9} \)
12. \(\frac{2}{3}, \frac{3}{5}, \frac{1}{2}, \frac{3}{4} \)
13. \(\frac{11}{15}, \frac{1}{5}, \frac{2}{3}, \frac{19}{30} \)

List three fractions equivalent to the given fraction.

14. \(\frac{1}{5} \)
15. \(\frac{15}{18} \)
16. \(\frac{4}{7} \)
17. \(\frac{9}{12} \)

Solve.

18. Ted is making a bread recipe that uses \(3 \frac{1}{4} \) cups of flour and a muffin recipe that uses \(2 \frac{3}{4} \) cups of flour.
 a. How much more flour is in the bread than in the muffins?
 b. How much flour does Ted need for both recipes?

19. Stretch Your Thinking Find the values of \(x \) and \(y \) in the drawing at the right.
 - \(x = \) \(\) inches
 - \(y = \) \(\) inches
Add or subtract.

1. \[3 - 1 \frac{2}{5} \]
2. \[2 \frac{7}{10} + 2 \frac{4}{5} \]
3. \[\frac{7}{9} - 3 \frac{2}{15} \]
4. \[4 \frac{5}{6} + 6 \frac{7}{7} \]
5. \[5 \frac{1}{8} - 4 \frac{1}{5} \]
6. \[4 \frac{79}{100} + 5 \frac{9}{10} \]
7. \[\frac{13}{16} + 2 \frac{2}{3} \]
8. \[8 \frac{1}{4} - 3 \frac{9}{20} \]
9. \[7 \frac{8}{9} + 9 \frac{7}{8} \]

Solve.

10. The Taylors have four dogs. Molly eats \(4 \frac{1}{2}\) cups of food each day, Roscoe eats \(3 \frac{2}{3}\) cups, Milo eats \(1 \frac{3}{4}\) cups, and Fifi eats \(\frac{3}{4}\) cup. How much do the Taylors’ dogs eat each day altogether?

11. Refer to Problem 10. How much more food does Molly eat each day than Roscoe?

12. The vet told the Taylors (from Problem 10) to decrease the amount Molly eats by \(\frac{3}{4}\) cup. After Molly’s food is adjusted, will she eat more or less than Roscoe each day? How much more or less?
Remembering

What mixed number is shown by each shaded part?

1.

2.

3.

Answer the questions about the bar graph. Give your answers as simple fractions.

4. How many cookies are there altogether? ______

5. What fraction of the cookies are chocolate chip? ______

6. What fraction of the cookies are oatmeal? ______

7. What fraction of the cookies are peanut butter? ______

8. Melanie baked 25 cookies. Did she bake more or less than half of the cookies? ______
 How do you know?

9. Stretch Your Thinking Colby nailed together four wood boards as shown at the right. All four boards are $5\frac{1}{2}$ inches wide.
 a. Find the perimeter of the outside rectangle.

 b. Find the perimeter of the inside rectangle.
Use benchmarks of 0, $\frac{1}{2}$, and 1 to estimate the sum or difference.
Then find the actual sum or difference.

1. \(\frac{2}{5} + \frac{4}{7} \)
 Estimate: _____
 Sum: _____

2. \(\frac{13}{20} - \frac{3}{10} \)
 Estimate: _____
 Difference: _____

3. \(\frac{13}{18} + \frac{1}{2} \)
 Estimate: _____
 Sum: _____

Estimate the sum or difference by rounding each mixed number to the nearest whole number. Then find the actual sum or difference.

4. \(3\frac{5}{8} - 1\frac{1}{2} \)
 Estimate: _____
 Difference: _____

5. \(6\frac{4}{9} + 5\frac{7}{12} \)
 Estimate: _____
 Sum: _____

6. \(7\frac{11}{18} - 4\frac{1}{15} \)
 Estimate: _____
 Difference: _____

Tell whether the answer is reasonable or unreasonable. Explain how you decided.

7. \(2\frac{1}{5} + 5\frac{1}{3} = 7\frac{8}{15} \)

8. \(\frac{7}{8} - \frac{2}{11} = \frac{9}{19} \)

9. \(\frac{3}{8} + \frac{4}{5} = \frac{7}{40} \)

10. \(4\frac{1}{3} - 1\frac{5}{6} = 2\frac{1}{2} \)

Solve.

11. Estimate the difference \(8\frac{7}{12} - 4\frac{7}{8} - \frac{4}{10} \)
 Explain how you found the answer.
Add or subtract. Give your answer in simplest form.

1. \(4 \quad - \frac{37}{8}\)
2. \(\frac{5}{2} + 6\frac{3}{4}\)
3. \(\frac{31}{10} - 1\frac{5}{6}\)
4. \(\frac{6}{7} + \frac{3}{5}\)
5. \(10\frac{3}{8} - \frac{7}{8}\)
6. \(2\frac{13}{25} + 3\frac{99}{100}\)

Compare.

7. \(\frac{5}{7} \bigcirc \frac{5}{9}\)
8. \(\frac{99}{100} \bigcirc \frac{100}{101}\)
9. \(\frac{7}{15} \bigcirc \frac{9}{20}\)
10. \(\frac{6}{11} \bigcirc \frac{4}{9}\)
11. \(\frac{1}{21} \bigcirc \frac{1}{22}\)
12. \(\frac{5}{16} \bigcirc \frac{1}{4}\)

Solve.

13. On the first math test, Octavia answered 24 out of 30 questions correctly. On the second math test, she answered 19 out of 25 questions correctly. On which test did she answer the greater fraction of the questions correctly?

14. Stretch Your Thinking Isidro is riding his bike 22 miles to the art museum. He rode \(7\frac{1}{2}\) miles and then took a break. Since his break, he has ridden \(5\frac{7}{10}\) mile. How much farther does he have to ride to get to the museum?
Solve. Explain why your answer is reasonable.

1. Zoe had a board $5\frac{1}{4}$ feet long. She cut off a piece. Now the board is $3\frac{5}{6}$ feet long. How long was the piece she cut off?

Answer: ________________________________

Why is the answer reasonable?

2. A rectangle has a length of $10\frac{3}{16}$ inches and a width of $6\frac{7}{8}$ inches. What is the perimeter of the rectangle?

Answer: ________________________________

Why is the answer reasonable?

3. Max is making trail mix. He combines $\frac{2}{5}$ pound of dried fruit and $\frac{1}{3}$ pound of mixed nuts. He adds sunflower seeds to make a total of 1 pound. What is the weight of the seeds?

Answer: ________________________________

Why is the answer reasonable?

4. At the start of party, a bowl contains 16 pints of punch. Guests drink $10\frac{1}{4}$ pints. Then the host adds another $7\frac{1}{2}$ pints to the bowl. How much punch is in the bowl now?

Answer: ________________________________

Why is the answer reasonable?

Tell whether the answer is reasonable or unreasonable. Explain how you decided.

1. \(\frac{8}{9} + \frac{1}{10} = \frac{39}{90}\)

2. \(\frac{5}{6} - \frac{7}{5} = \frac{237}{42}\)

3. \(\frac{11}{12} - \frac{7}{8} = \frac{1}{24}\)

4. \(\frac{5}{6} + \frac{13}{4} = \frac{5}{12}\)

Add or subtract.

5. \(\frac{7}{8} + \frac{7}{8} = \) ________________

6. \(\frac{4}{7} + \frac{2}{3} = \) ________________

7. \(\frac{7}{15} - \frac{3}{10} = \) ________________

8. \(\frac{3}{4} - \frac{5}{12} = \) ________________

9. \(\frac{54}{5} - 2\frac{1}{3} = \) ________________

10. \(\frac{7}{6} + 2\frac{11}{12} = \) ________________

Compare.

11. \(\frac{5}{8} \bigcirc \frac{5}{9}\)

12. \(1\frac{7}{12} \bigcirc 1\frac{2}{3}\)

13. \(\frac{5}{9} \bigcirc \frac{3}{7}\)

14. \(\frac{1}{89} \bigcirc \frac{1}{90}\)

15. \(\frac{5}{18} \bigcirc \frac{2}{9}\)

16. \(\frac{65}{66} \bigcirc \frac{55}{56}\)

Solve.

17. **Stretch Your Thinking** Find two mixed numbers such that when you estimate their sum by rounding to the nearest whole number you get a different estimate than when you round to the nearest half. Demonstrate that your numbers satisfy this condition.
In the space below, design and sketch a bird hotel. Assume your design will be made from wood, and includes these characteristics.

- Walls not exposed to weathering are \(\frac{1}{4} \)-inch thick.
- Walls exposed to weathering are \(\frac{1}{2} \)-inch thick.
- The rooms are identical.

State the number of birds your design will accommodate, and the dimensions of one room. Then use the dimensions to compute the overall length, width, and height of your hotel.
Add or subtract. Give your answer in simplest form.

1. \[\frac{7}{4} - \frac{5}{6} \]
2. \[\frac{9}{10} + \frac{9}{10} \]
3. \[4 - \frac{16}{7} \]
4. \[\frac{7}{10} + \frac{11}{12} \]
5. \[\frac{4}{5} - \frac{7}{8} \]
6. \[3 \frac{5}{12} + 1 \frac{2}{3} \]

Compare.

7. \[\frac{1}{57} \bigcirc \frac{1}{47} \]
8. \[\frac{5}{7} \bigcirc \frac{4}{5} \]
9. \[\frac{14}{15} \bigcirc \frac{15}{16} \]
10. \[\frac{5}{6} \bigcirc \frac{2}{3} \]
11. \[15 \frac{3}{8} \bigcirc 15 \frac{7}{10} \]
12. \[14 \frac{1}{10} \bigcirc 13 \frac{9}{10} \]

Solve.

13. Blake watched \(\frac{1}{6} \) of a movie on Friday, \(\frac{3}{5} \) of the movie on Saturday, and the rest on Sunday. What fraction of the movie did he watch on Sunday?

\[\text{Show your work.} \]

14. **Stretch Your Thinking** Marshall surveyed his classmates and found that \(\frac{5}{7} \) have a sister, \(\frac{1}{2} \) have a brother, and \(\frac{3}{14} \) don’t have any siblings.

 a. What is the sum of the three fractions?

 \[\text{Show your work.} \]

 b. Why does it make sense for the sum to be greater than 1 whole?
Write each fraction as a decimal and then say it.

1. \(\frac{349}{1,000}\) ______ 2. \(\frac{6}{10}\) ______
3. \(\frac{58}{100}\) ______ 4. \(\frac{27}{1,000}\) ______
5. \(\frac{2}{10}\) ______ 6. \(\frac{9}{100}\) ______
7. \(\frac{6}{1,000}\) ______ 8. \(\frac{71}{100}\) ______
9. \(\frac{90}{100}\) ______ 10. \(\frac{843}{1,000}\) ______
11. \(\frac{5}{10}\) ______ 12. \(\frac{4}{100}\) ______
13. \(\frac{1}{1,000}\) ______ 14. \(\frac{45}{100}\) ______
15. \(\frac{896}{1,000}\) ______ 16. \(\frac{58}{1,000}\) ______

Solve.

17. A large building has 1,000 windows, and 5 of the windows need to be replaced. What decimal represents the number of windows that need to be replaced?

18. At a reception, 23 of 100 pieces of wedding cake have been eaten. What decimal number represents the number of pieces of cake that have been eaten?

19. Jody made 10 party invitations. Yesterday she mailed 4 of them. What decimal represents the number of invitations that have been mailed?

20. There are 1,000 vehicles in a stadium parking lot; 422 of the vehicles are trucks. What decimal represents the number of vehicles that are trucks?

21. Mr. Chan handed out eight tenths of his flyers. Write a fraction and a decimal that represents the amount of the flyers that he handed out.

22. Jason has an album that holds 100 trading cards. He has 52 trading cards in the album. Write a fraction and a decimal that represent the amount of the album that is filled.
Add.

1. \(\frac{1}{3} + \frac{1}{7} \)
2. \(\frac{1}{5} + \frac{8}{15} \)
3. \(\frac{3}{8} + \frac{1}{4} \)

Subtract.

4. \(\frac{4}{5} - \frac{1}{8} \)
5. \(\frac{5}{6} - \frac{5}{9} \)
6. \(\frac{3}{5} - \frac{1}{12} \)

Add or Subtract.

7. \(5 - \frac{3\frac{5}{8}}{} \)
8. \(8\frac{1}{5} + \frac{5\frac{4}{7}}{} \)
9. \(11\frac{2}{5} - \frac{6\frac{3}{20}}{} \)

Solve.

10. Kennedy served 15\(\frac{3}{4} \) hours of volunteer service last month. She served 21\(\frac{5}{6} \) hours of volunteer service this month. How many more hours did she serve this month?

11. Stretch Your Thinking Draw a diagram that shows 0.5 and \(\frac{1}{2} \) are equivalent.
Write a decimal number for each word name.

1. nine thousand, six hundred five and nine tenths

2. two hundred ten thousand, fifty and nineteen hundredths

3. three tenths

4. seven thousandths

5. eight hundredths

Write each amount as a decimal number.

6. \(\frac{602}{1000} \)

7. \(\frac{21}{100} \)

8. \(\frac{9}{10} \)

9. \(\frac{1427}{1000} \)

10. \(\frac{712}{1000} \)

11. \(\frac{9}{100} \)

12. \(\frac{13}{1000} \)

13. \(\frac{68}{100} \)

14. \(\frac{1}{1000} \)

15. \(\frac{637}{10} \)

16. \(\frac{84}{1000} \)

17. \(\frac{4}{1000} \)

18. \(\frac{17}{1000} \)

19. \(\frac{6}{100} \)

20. \(\frac{106}{1000} \)

21. \(\frac{3}{100} \)

22. 2.6 2.60 2.06 2.600 23. 4.07 4.070 4.70 4.0700

24. 65.800 65.8 65.08 65.80 25. 37.6 37.060 37.0600 37.06

26. Write three decimals that are equivalent.

27. Write the decimals in Exercise 26 as fractions.

Add or Subtract.

1. \(\frac{81}{6} - \frac{33}{8} \)
2. \(\frac{63}{4} + 2\frac{4}{5} \)
3. \(9\frac{2}{3} + 5\frac{7}{10} \)

Solve.

4. Tanner earns 5 credits while playing on a math review website. He uses \(\frac{4}{15} \) credits while reviewing fractions. How many credits does he have left?

Estimate the sum or difference by rounding each mixed number to the nearest whole number. Then find the actual sum or difference.

5. \(15\frac{5}{6} - 2\frac{1}{5} \)
6. \(\frac{83}{5} + 3\frac{1}{2} \)

Write each fraction as a decimal and then say it.

7. \(\frac{44}{100} \)
8. \(\frac{13}{1,000} \)
9. \(\frac{3}{10} \)
10. \(\frac{541}{1,000} \)

11. Stretch Your Thinking Draw two number lines that show 0.20 and \(\frac{1}{5} \) are equivalent.
Write each amount as a decimal number.

1. 9 tenths ______
2. 52 thousandths ______
3. 8 hundredths ______
4. 3 cents ______
5. \(\frac{65}{100} \) ______
6. \(\frac{548}{1,000} \) ______
7. \(\frac{12}{1,000} \) ______
8. \(\frac{7}{100} \) ______
9. 4 thousandths ______

Circle the value that is *not* equivalent to the other values.

10. 0.47 0.470 0.407 0.4700 11. 0.5 0.50 \(\frac{5}{10} \) 0.05
12. 0.801 0.810 0.81 0.8100 13. 0.700 0.70 0.07 0.7
14. 0.39 0.390 \(\frac{39}{100} \) \(\frac{39}{1,000} \) 15. 0.04 0.40 0.040 0.0400

Compare. Write > (greater than) or < (less than).

16. 0.36 \(\bigcirc \) 0.8 17. 0.405 \(\bigcirc \) 0.62 18. 0.91 \(\bigcirc \) 0.95
19. 0.45 \(\bigcirc \) 0.4 20. 0.836 \(\bigcirc \) 0.83 21. 0.299 \(\bigcirc \) 0.3
22. 0.621 \(\bigcirc \) 0.612 23. 0.7 \(\bigcirc \) 0.07 24. 0.504 \(\bigcirc \) 0.54

A store had the same amount of five fabrics. The chart shows the how much of each fabric is left. Use the data to answer each question.

25. The store sold the most of which fabric? Explain.

27. The same amount of which fabrics is left? Explain.
Estimate the sum or difference by rounding each mixed number to the nearest whole number. Then find the actual sum or difference.

1. $3 \frac{7}{8} + 4 \frac{2}{3}$
 Estimate: __________
 Sum: __________

2. $7 \frac{5}{8} - 1 \frac{1}{2}$
 Estimate: __________
 Difference: __________

Solve. Explain how you know your answer is reasonable.

3. Eli practices for a piano recital $3 \frac{3}{4}$ hours in one week. In the same week, he practices basketball $1 \frac{2}{3}$ hours. How much longer does he practice for his piano recital?
 Answer: ________________________________
 Why is the answer reasonable?
 __
 __

Write a decimal number for each word name.

4. six hundred two and six tenths

5. five thousandths

6. Stretch Your Thinking Draw two number lines that show 0.200 and $\frac{1}{5}$ are equivalent.
The chart at the right shows the time each member of a relay team ran during a race. Use the data to answer each question.

1. How much longer did Jack run than Dusty?

2. How much time did it take Brandon and Raj to complete their two legs of the race combined?

3. Which two runners had the greatest difference in their running times? What is the difference?

Copy each exercise. Then add or subtract.

4. $0.9 + 0.06 = \underline{\hspace{2cm}}$

5. $0.47 + 0.25 = \underline{\hspace{2cm}}$

6. $0.56 + 0.91 = \underline{\hspace{2cm}}$

7. $1.4 - 0.9 = \underline{\hspace{2cm}}$

8. $5 - 1.5 = \underline{\hspace{2cm}}$

9. $3.7 - 2.49 = \underline{\hspace{2cm}}$

10. $0.08 + 0.6 = \underline{\hspace{2cm}}$

11. $0.48 + 0.39 = \underline{\hspace{2cm}}$

12. $19 + 1.04 = \underline{\hspace{2cm}}$

13. $3 - 0.05 = \underline{\hspace{2cm}}$

14. $4.09 - 0.2 = \underline{\hspace{2cm}}$

15. $6.07 - 4 = \underline{\hspace{2cm}}$
Use benchmarks of 0, $\frac{1}{2}$, and 1 to estimate the sum or difference. Then find the actual sum or difference.

1. $\frac{7}{12} + \frac{5}{6}$

 Estimate:
 Sum:

2. $\frac{4}{9} - \frac{7}{18}$

 Estimate:
 Difference:

Solve. Explain how you know your answer is reasonable.

3. Jordan is making a beaded necklace. Two thirds of the beads she uses are red and $\frac{4}{21}$ of the beads are blue. She wants the rest to be white. What fraction of the beads should be white?

 Answer:
 Why is the answer reasonable?

Compare. Write $>$ (greater than) or $<$ (less than).

4. 0.2 0.19
5. 0.564 0.602
6. 0.08 0.8

7. Stretch Your Thinking Draw a diagram that shows $0.27 + 0.23 = \frac{1}{2}$.
Use the number 724,062.58 for each exercise.

1. Increase the number by 0.07. ________________
2. Decrease the number by 100,000. ________________
3. Add 8 in the hundreds place. ________________
4. Subtract 2 from the hundredths place. ________________

Copy each exercise. Then add or subtract.

5. $37 + 45¢ = _____
6. $82.06 + 25¢ = _____
7. 59¢ + $4.23 = _____

8. 9 m + 0.05 m = _____
9. 92.24 + 3.6 = _____
10. 5 m + 0.08 m = _____

11. 231 + 0.26 = _____
12. 46.08 + 0.97 = _____
13. 6.4 m + 0.07 m = _____

Solve.

14. Lina is making curtains and a decorative pillow for her bedroom. She needs 0.75 meter of cloth for the pillow and 4.67 meters for the curtains. How much cloth does she need in all?

15. Olivia is buying a jacket that costs $85.99. The sales tax that will be added to the cost of the jacket is $5.16. What is the total cost of the jacket including sales tax?

Compare. Write > (greater than) or < (less than).

1. \(\frac{3}{7} \bigcirc \frac{3}{8}\)
2. \(\frac{1}{8} \bigcirc \frac{1}{6}\)
3. \(\frac{9}{11} \bigcirc \frac{7}{11}\)
4. \(\frac{4}{8} \bigcirc \frac{5}{6}\)
5. \(\frac{5}{6} \bigcirc \frac{3}{4}\)
6. \(\frac{7}{12} \bigcirc \frac{6}{7}\)

Compare. Write > (greater than) or < (less than).

7. 0.17 \(\bigcirc\) 0.28
8. 0.275 \(\bigcirc\) 0.109
9. 0.29 \(\bigcirc\) 0.3
10. 0.61 \(\bigcirc\) 0.58
11. 0.81 \(\bigcirc\) 0.79
12. 0.05 \(\bigcirc\) 0.5

Add or subtract.

13. 0.8
\[+ \quad 0.07\]
14. 0.22
\[+ \quad 0.49\]
15. 2.6
\[- \quad 0.7\]

16. 5.6
\[- \quad 4.87\]
17. 7
\[- \quad 3.8\]
18. 0.96
\[+ \quad 0.17\]

19. Stretch Your Thinking Write 4 different mixed decimals that equal 11 wholes. Draw a picture that shows you are correct.
Copy each exercise. Then subtract.

1. $6,000 - 348 = \underline{\hspace{2cm}}$
2. $7,364 - 937 = \underline{\hspace{2cm}}$
3. $50,821 - 3,617 = \underline{\hspace{2cm}}$
4. $720.95 - 286.4 = \underline{\hspace{2cm}}$
5. $18,652 - 4.31 = \underline{\hspace{2cm}}$
6. $350.6 - 176.54 = \underline{\hspace{2cm}}$

Solve.

7. Ahmad had a piece of rope that was 7.14 meters long. He cut off 0.09 meter to practice making knots. What was the length of the rope after the cut?

8. Natasha has a large collection of books. The thickest book measures 4.9 centimeters. The thinnest book measures 1.8 centimeters. What is the difference in thicknesses of those two books?

9. Yoshi saved $1,238.46 for a vacation in Mexico. While in Mexico, she spent $975. What amount of money did Yoshi not spend?

10. Tarantulas are one of the largest spiders on Earth. A tarantula can grow to be about 6.8 centimeters long. A spitting spider can grow to be about 0.9 centimeters long. About how much longer are the largest tarantulas than the largest spitting spiders?
Write the mixed number as a fraction.

1. \(1\frac{3}{5} = \)
2. \(3\frac{1}{8} = \)
3. \(2\frac{2}{3} = \)
4. \(4\frac{4}{7} = \)
5. \(1\frac{1}{3} = \)
6. \(3\frac{5}{6} = \)

Add or subtract.

7. \(6 - 4.1 = \)
8. \(0.32 + 0.92 = \)
9. \(4.5 - 3.77 = \)

10. \(44\,\text{¢} + $4.87 = \)
11. \(32\,\text{¢} + 66\,\text{¢} = \)
12. \(0.43\,\text{m} + 0.77\,\text{m} = \)

Solve.

13. When Erin got her puppy, Cuddles, he weighed 788.52 grams. He now weighs 2,313.6 grams more than he did when Erin first brought him home. How much does Cuddles weigh now?

14. **Stretch Your Thinking** Write a subtraction equation with a difference of 54.57. Then draw a number line to show between which two whole numbers the difference lies.
Use what you know about the Commutative Property to solve for \(n \).

1. \(26,184 + 1,546 = 1,546 + n \)
 \(n = \) _______

2. \(17.39 + 12.58 = 12.58 + n \)
 \(n = \) _______

Regroup the numbers using the Associative Property. Then add.

3. \(\left(\frac{7}{10} + \frac{3}{4} \right) + \frac{1}{4} = \) ___

4. \(1.02 + (0.98 + 4.87) = \) ___

5. \(2\frac{5}{8} + (\frac{3}{8} + \frac{2}{3}) = \) ___

Use the Distributive Property to rewrite the problem so it has only two factors. Then solve.

6. \((25 \times 9) + (75 \times 9) = \) ___

Group the numbers to make the addition easier. Then add.

7. \(20,000 \)
 \(70,000 \)
 \(30,000 \)
 \(68,000 \)
 \(+ 80,000 \)

8. \(10.75 \)
 \(10.4 \)
 \(10.25 \)
 \(10.57 \)
 \(+ 10.6 \)

9. \(1.600 \)
 \(1.200 \)
 \(1.200 \)
 \(+ 1.479 \)

10. \(1\frac{7}{11} \)
 \(5\frac{5}{6} \)
 \(3\frac{11}{11} \)
 \(2\frac{1}{6} \)
 \(+ \frac{1}{11} \)

11. On Monday, Mr. Borden ran 4.6 miles in the morning and 0.78 miles that afternoon. On Tuesday, he ran 3.4 miles. How much did he run on Monday and Tuesday all together. Write an equation and solve.
Solve.

1. Trent is making a week’s worth of after-school snacks for himself and his sister. He uses \(1 \frac{1}{5}\) cups of mixed nuts and \(2 \frac{3}{4}\) cups of granola. How many cups did he use in all?

2. Shannon walked \(4 \frac{7}{8}\) miles and ran \(3 \frac{1}{2}\) miles during the week. How much further did she walk than run?

Add.

3. \$54.25 + 55¢ = ______
4. 68¢ + 21¢ = ______
5. 92¢ + $2.39 = ______

6. \(0.06\) m
 \(+ 0.9\) m

7. \(0.44\) m
 \(+ 0.15\) m

8. \(5.6\) m
 \(+ 0.7\) m

Subtract.

9. 70,763
 \(- 2,176\)

10. 6,982
 \(- 455\)

11. 5,000
 \(- 452\)

12. 46,872
 \(- 8.28\)

13. 561.5
 \(- 478.49\)

14. 676.54
 \(- 196.9\)

15. Stretch Your Thinking Use decimals and fractions in the same equation showing the Commutative Property. Repeat for the Associative Property.
Round to the nearest whole number.

1. 8.36 _____ 2. 18.7 _____ 3. 9.831 _____

Round to the nearest tenth.

4. 24.316 _____ 5. 5.28 _____ 6. 23.017 _____

Round to the nearest hundredth.

Estimate each sum or difference.

10. $46.78 – $18.55 _____ 11. 12.3 + 4.7 _____ 12. 9.586 + 3.097 _____

Solve.

13. A decimal number changed to 23.7 after it was rounded. Give a decimal number that is less than 23.7 and another that is greater than 23.7 that each round to 23.7. Explain to what place each number was rounded.

14. When Marla rounded 19.95 to the nearest tenth, she found the number changed to 20. Is this correct? Explain.

15. Peter decided that the total cost for a $24.55 pair of jeans and a $12.25 shirt was $26.80. Was Peter’s answer reasonable? Explain why or why not.

16. Biruk wants to buy a book for $15.25 and a book for $4.85. He wants to pay with one $20 bill. Use estimation to decide if this is reasonable. Explain to what place value to round for an estimate that is useful in this situation.
Solve.

1. Matt pours \(3 \frac{2}{3}\) cups of orange juice into a measuring cup from a large container. Then he pours \(1 \frac{1}{4}\) cups back into the container. How much orange juice remains in the measuring cup?

Show your work.

2. The school cafeteria manager orders \(7 \frac{3}{8}\) pounds of red onions and \(10 \frac{1}{2}\) pounds of yellow onions. How many pounds of onions did the manager order in all?

Subtract.

3. \(21,445 - 3,548 = \)

4. \(980.3 - 525.35 = \)

5. \(774.12 - 248.8 = \)

Use the Distributive Property to rewrite each problem so it has only two factors. Then solve.

6. \((5 \times 600) + (5 \times 400) = \)

7. \((15 \times 6) + (85 \times 6) = \)

8. Stretch Your Thinking Name three decimals between 16.4 and 16.5. Draw a number line estimating the placement of all five decimals.

Jamal made a bar graph to compare the weights of 4 puppies in the animal shelter.

1. How much did the poodle weigh?

2. List the puppies in order from heaviest to lightest.

3. What is the combined weights of the Labrador retriever and the beagle?

4. How much more did the Labrador retriever weigh than the dachshund?

The table shows the amount of rainfall this month in 4 different cities.

5. Make a bar graph showing this information. Remember to give your graph a title, labels, and a scale.
Multiply.

1. $45 \cdot 3 = \underline{\hspace{1cm}}$
2. $431 \cdot 6 = \underline{\hspace{1cm}}$
3. $17 \cdot 32 = \underline{\hspace{1cm}}$

4. $34 \cdot 67 = \underline{\hspace{1cm}}$
5. $1,509 \cdot 3 = \underline{\hspace{1cm}}$
6. $5,098 \cdot 7 = \underline{\hspace{1cm}}$

Regroup the numbers using the Associative Property. Then add.

7. $3.6 + (0.4 + 0.25) = \underline{\hspace{10cm}}$

8. $2\frac{6}{10} + \left(\frac{4}{10} + \frac{4}{5}\right) = \underline{\hspace{10cm}}$

Estimate each sum or difference.

9. $7.535 + 2.706$
10. $27.89 - 12.64$
11. $11.1 + 9.9$

12. Stretch Your Thinking The bar graph shows the heights of bean plants for four students in Mrs. Jarnigan’s fourth-grade science class.

Write a two-step problem using the data from the graph.

__

__

__
Look again at the table on Student Book page 54.
It shows how far from the sun the planets in our solar system orbit. For example, it shows that Jupiter (5.2 AU) orbits about 5 times farther from the sun than Earth (1 AU) because $1 \times 5 = 5$.

On a grid where 1 grid square = 1 AU, a dot for Earth would be 1 grid square away from the sun, and a dot for Jupiter would be about 5 grid squares away.

On the left side of the grid below, draw a dot to represent the sun. Then using the scale 1 grid square = 1 AU, draw and label a dot for each of the eight planets to show their relative distances from the sun.
Solve.

1. During a movie, Kelley eats \(12 \frac{2}{7}\) ounces of snack mix and Madison eats \(15 \frac{3}{4}\) ounces of snack mix. How much did they eat altogether?

2. Caleb practices the piano for \(15 \frac{2}{3}\) minutes on Monday and \(21 \frac{1}{2}\) minutes on Tuesday. How much longer did he practice on Tuesday?

Estimate each sum or difference.

3. \(13.2 + 52.7\)
4. \(19.454 + 1.897\)
5. \($33.03 - $10.78\)

Carly made a bar graph to show how far each of her toy cars traveled.

6. How much farther did Carly’s yellow car travel than her blue car?

7. What is the greatest and least distance traveled? What is the difference between the two distances?

8. Stretch Your Thinking Brad has 32 ounces of mixed fruit to share with three friends. He gives 7.65 ounces to Carrie, 8.02 ounces to Joshua, and 6.88 ounces to Terrell. How much mixed fruit is left for Brad?
Solve. Write a multiplication equation for each problem.

Miguel swam 6 lengths of the pool. Po Lan swam 3 times as far as Miguel. Lionel swam \(\frac{1}{3} \) as far as Miguel.

1. How many lengths did Po Lan swim? _________
 Write the equation. ________________________

2. How many lengths did Lionel swim? _________
 Write the equation. ________________________

Chris cut a length of rope that was 12 feet long. Dayna cut a rope 4 times as long as Chris’s rope. Benita cut a rope \(\frac{1}{4} \) as long as Chris’s rope.

3. How long is Dayna’s rope? _________
 Write the equation. ________________________

4. How long is Benita’s rope? _________
 Write the equation. ________________________

Write two statements for each pair of treats. Use the word *times*.

5. Compare cookies and drinks.

6. Compare drinks and pizzas.

7. Compare cookies and pizzas.

Solve.

8. \(\frac{1}{3} \cdot 18 = \) _________
9. \(\frac{1}{4} \) of 12 = _________
10. \(\frac{1}{8} \cdot 32 = \) _________
11. \(\frac{1}{9} \) of 27 = _________
12. \(\frac{1}{8} \cdot 56 = \) _________
13. \(\frac{1}{3} \) of 15 = _________
Use the number lines to complete Exercises 1–3.

Thirds

<table>
<thead>
<tr>
<th>0</th>
<th>1/3</th>
<th>2/3</th>
<th>3/3</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1/3</td>
<td>2/3</td>
<td>3/3</td>
</tr>
</tbody>
</table>

Sixths

<table>
<thead>
<tr>
<th>0</th>
<th>1/6</th>
<th>2/6</th>
<th>3/6</th>
<th>4/6</th>
<th>5/6</th>
<th>6/6</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1/6</td>
<td>2/6</td>
<td>3/6</td>
<td>4/6</td>
<td>5/6</td>
<td>6/6</td>
</tr>
</tbody>
</table>

Twelfths

<table>
<thead>
<tr>
<th>0</th>
<th>1/12</th>
<th>2/12</th>
<th>3/12</th>
<th>4/12</th>
<th>5/12</th>
<th>6/12</th>
<th>7/12</th>
<th>8/12</th>
<th>9/12</th>
<th>10/12</th>
<th>11/12</th>
<th>12/12</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1/12</td>
<td>2/12</td>
<td>3/12</td>
<td>4/12</td>
<td>5/12</td>
<td>6/12</td>
<td>7/12</td>
<td>8/12</td>
<td>9/12</td>
<td>10/12</td>
<td>11/12</td>
<td>12/12</td>
</tr>
</tbody>
</table>

1. If you run $\frac{2}{3}$ mile, how many sixths have you run?

2. If you measure $\frac{5}{6}$ meter, how many twelfths have you measured?

3. If you have $\frac{8}{12}$ of a pizza, how many thirds do you have?

Write each fraction as a decimal.

4. $\frac{76}{1,000} = \underline{0.076}$

5. $\frac{7}{10} = \underline{0.7}$

6. $\frac{49}{100} = \underline{0.49}$

7. $\frac{32}{1,000} = \underline{0.032}$

Add or subtract.

8. $0.28 + 0.43 = \underline{0.71}$

9. $0.7 + 0.04 = \underline{0.74}$

10. $7.8 - 1.95 = \underline{5.85}$

11. **Stretch Your Thinking** Draw a diagram that shows $\frac{1}{5}$ times 30 equals 6.
Multiply.

1. $\frac{2}{3} \cdot 15 = \underline{\hspace{1cm}}$

2. $\frac{3}{4} \cdot 8 = \underline{\hspace{1cm}}$

3. $\frac{7}{8} \cdot 32 = \underline{\hspace{1cm}}$

4. $\frac{2}{9} \cdot 27 = \underline{\hspace{1cm}}$

5. $\frac{3}{8} \cdot 56 = \underline{\hspace{1cm}}$

6. $\frac{3}{4} \cdot 16 = \underline{\hspace{1cm}}$

7. $\frac{2}{3} \cdot 21 = \underline{\hspace{1cm}}$

8. $\frac{4}{5} \cdot 35 = \underline{\hspace{1cm}}$

9. $\frac{5}{7} \cdot 28 = \underline{\hspace{1cm}}$

10. $\frac{4}{9} \cdot 45 = \underline{\hspace{1cm}}$

11. $\frac{5}{12} \cdot 24 = \underline{\hspace{1cm}}$

12. $\frac{9}{10} \cdot 70 = \underline{\hspace{1cm}}$

13. $\frac{7}{9} \cdot 18 = \underline{\hspace{1cm}}$

14. $\frac{5}{8} \cdot 80 = \underline{\hspace{1cm}}$

15. $\frac{4}{15} \cdot 45 = \underline{\hspace{1cm}}$

Solve.

16. Rebecca has 21 math problems to solve. She has solved $\frac{2}{7}$ of them. How many problems has she solved?

17. Tessa shot 36 free throws. She made 27 of them. What fraction of her free throws did Tessa make?

18. A carousel has 56 horses. $\frac{3}{8}$ of them are white. How many horses are not white?

19. Nathan works at a hardware store. Today he sold 48 tools. $\frac{5}{6}$ of the tools he sold were hammers. How many hammers did Nathan sell today?
Complete each exercise about the pairs of fraction bars.

1. What equivalent fractions are shown? ______

2. Identify the multiplier. ______

3. What equivalent fractions are shown? ______

4. Identify the divisor. ______

Write each amount as a decimal number.

5. \[
\frac{84}{1,000} \quad \frac{31564}{1,000} \quad \frac{1176}{100} \quad \frac{876}{1,000}
\]

Solve. Write a multiplication equation for each problem.

Jonas has 8 sponsors for the school walk-a-thon.
Maura has 3 times as many sponsors as Jonas.
Trenton has \(\frac{1}{4}\) as many sponsors as Jonas.

9. How many sponsors does Maura have? ______
 Write the equation. ________________

10. How many sponsors does Trenton have? ______
 Write the equation. ________________

11. Stretch Your Thinking Hannah and Jo are driving separately to a restaurant that is 60 miles away from their town. Hannah drives \(\frac{3}{5}\) of the distance and Jo drives \(\frac{5}{6}\) of the distance before stopping for gasoline. Who has driven farther? How many more miles does each driver need to drive to reach the restaurant?

The campers in each cabin at Bear Claw Camp held a contest to see who could walk the farthest in one day. Use the sign to answer the questions. Write your answers as fractions.

1. The campers in Cabin A walked \(\frac{1}{4} \) of the way to Otter Ridge. How many miles did they walk?

2. The campers in Cabin B walked \(\frac{2}{3} \) of the way to Silver Stream. How many miles did they walk?

3. The campers in Cabin C walked \(\frac{3}{5} \) of the way to Fossil Cave. How many miles did they walk?

4. The campers in Cabin D walked \(\frac{1}{6} \) of the way to Mammoth Mountain. How many miles did they walk?

5. Which group of campers walked the farthest that day?

6. Show \(\frac{2}{3} \) of 4 on the number line.

7. Write \(\frac{2}{3} \) of 4 as a fraction. _____

8. Write \(\frac{2}{3} \) of 4 as a mixed number. _____

Multiply. Write your answers as fractions.

9. \(\frac{2}{7} \cdot 4 = \) _____
10. \(\frac{2}{3} \cdot 8 = \) _____
11. \(\frac{5}{6} \cdot 4 = \) _____
12. \(\frac{2}{9} \cdot 20 = \) _____
13. \(\frac{7}{9} \cdot 2 = \) _____
14. \(\frac{3}{8} \cdot 5 = \) _____
15. \(\frac{2}{3} \cdot 13 = \) _____
16. \(\frac{5}{12} \cdot 18 = \) _____
17. \(\frac{5}{9} \cdot 12 = \) _____
Compare.

1. $\frac{5}{6} \bigcirc \frac{5}{7}$
2. $\frac{1}{5} \bigcirc \frac{1}{4}$
3. $\frac{8}{10} \bigcirc \frac{6}{8}$
4. $\frac{6}{7} \bigcirc \frac{7}{8}$
5. $\frac{2}{3} \bigcirc \frac{3}{4}$
6. $\frac{8}{9} \bigcirc \frac{6}{7}$

Compare.

7. $0.54 \bigcirc 0.65$
8. $0.207 \bigcirc 0.342$
9. $0.5 \bigcirc 0.47$
10. $0.76 \bigcirc 0.67$
11. $0.22 \bigcirc 0.41$
12. $0.6 \bigcirc 0.06$

Multiply.

13. $\frac{4}{5} \cdot 20 =
14. \frac{2}{3} \cdot 21 =
15. \frac{5}{8} \cdot 24 =

16. $\frac{1}{9} \cdot 36 =
17. \frac{3}{4} \cdot 16 =
18. \frac{2}{7} \cdot 14 =

19. $\frac{3}{12} \cdot 24 =
20. \frac{8}{10} \cdot 80 =
21. \frac{3}{9} \cdot 45 =

22. Stretch Your Thinking Write a multiplication equation using one whole number and one fraction that have a product of $\frac{18}{8}$.

Tanith is using a number line to find \(\frac{3}{4} \cdot \frac{2}{5} \). This is her work so far:

1. Explain Tanith’s work so far to someone at home.

2. Finish Tanith’s work by circling \(\frac{3}{4} \) of each circled fifth. How many 20ths did you circle altogether? ______

What is \(\frac{3}{4} \cdot \frac{2}{5} \)? ______

3. Use the number line to find \(\frac{2}{3} \cdot \frac{5}{6} \).
Label all the parts above and below. ______

Solve.

4. Four friends at a party popped \(\frac{3}{4} \) of a bag of popcorn.
They ate half of what was popped. What fraction of the popcorn in the bag did they eat? __________

5. Ashley brought \(\frac{7}{8} \) gallon of lemonade to the party.
Her friends drank \(\frac{2}{3} \) of it. How many gallons of lemonade did they drink? __________

Multiply. You do not need to simplify.

6. \(\frac{2}{7} \cdot \frac{1}{3} = \) ______
7. \(\frac{4}{9} \cdot \frac{2}{9} = \) ______
8. \(\frac{1}{8} \cdot \frac{5}{6} = \) ______
9. \(\frac{2}{7} \cdot 12 = \) ______
10. \(\frac{4}{5} \cdot \frac{2}{3} = \) ______
11. \(\frac{1}{7} \cdot \frac{3}{5} = \) ______
12. \(\frac{9}{10} \cdot \frac{1}{2} = \) ______
13. \(\frac{5}{12} \cdot 3 = \) ______
14. \(\frac{5}{6} \cdot \frac{1}{6} = \) ______
Name the mixed number shown by the shaded parts.

1. ____________ 2. ____________ 3. ____________

Add.

4. $454 + 0.65 = _____ \quad 5. \quad 80.55 + 0.91 = _____ \quad 6. \quad 31.78 \text{ m} + 6.2 \text{ m} = _____

7. Show $\frac{1}{3}$ of 7 on the number line.

8. Write $\frac{1}{3}$ of 7 as a fraction. _____

9. Write $\frac{1}{3}$ of 7 as a mixed number. _____

10. **Stretch Your Thinking** Solve for the unknown fraction. Then divide and shade an area model to show the equation. $\frac{2}{5} \cdot ? = \frac{10}{30}$.

Multiply. Simplify first if you can.

1. \(\frac{2}{5} \cdot \frac{6}{7} = \)
2. \(\frac{4}{9} \cdot \frac{1}{8} = \)
3. \(\frac{5}{24} \cdot \frac{8}{15} = \)
4. \(\frac{2}{17} \cdot \frac{8}{1} = \)
5. \(\frac{3}{4} \cdot \frac{12}{25} = \)
6. \(\frac{5}{7} \cdot \frac{3}{8} = \)
7. \(\frac{3}{10} \cdot \frac{2}{3} = \)
8. \(\frac{5}{16} \cdot \frac{2}{25} = \)
9. \(\frac{4}{35} \cdot \frac{7}{12} = \)
10. \(\frac{5}{6} \cdot \frac{7}{1} = \)
11. \(\frac{7}{9} \cdot \frac{6}{49} = \)
12. \(\frac{7}{8} \cdot \frac{2}{3} = \)

13. Which fraction is not equivalent to the others?

\[\frac{3}{15}, \frac{2}{10}, \frac{1}{5}, \frac{9}{45}, \frac{10}{50}, \frac{6}{40}, \frac{7}{35}, \frac{100}{500} \]

Solve.

14. In the town zoo, \(\frac{3}{28} \) of the animals are birds. Of the birds, \(\frac{4}{15} \) are birds of prey. What fraction of the animals at the zoo are birds of prey?

15. Tuesday at the zoo, \(\frac{5}{12} \) of the visitors were adults. Of these adults, \(\frac{3}{10} \) were men. What fraction of the people who visited the zoo on Tuesday were men?

16. On Tuesday, \(\frac{14}{25} \) of the souvenirs purchased at the zoo gift shop were stuffed animals. Of the stuffed animals purchased, \(\frac{10}{21} \) were bears. What fraction of the souvenirs purchased at the zoo gift shop on Tuesday were stuffed bears?
Add or subtract.

1. \(\frac{4}{5} + \frac{2}{5} \)
2. \(\frac{5}{6} + \frac{3}{6} \)
3. \(\frac{1}{3} - \frac{1}{3} \)

4. \(\frac{3}{4} + \frac{5}{4} \)
5. \(7\frac{8}{9} - 3\frac{5}{9} \)
6. \(6 - \frac{4}{2} \)

Subtract.

7. \(31,763 - 6.51 = \)
8. \(132.76 - 87.24 = \)
9. \(968.29 - 217.5 = \)

10. Use the number line to find \(\frac{3}{4} \cdot \frac{2}{5} \). Label all the parts above and below.

\[\frac{3}{4} \cdot \frac{2}{5} = \]

0

1

11. **Stretch Your Thinking** Write a word problem that will use the equation \(\frac{2}{5} \cdot \frac{8}{10} = x \) in order to solve. Then simplify and multiply to solve.
Find each product by first rewriting each mixed number as a fraction.

1. \(\frac{3}{7} \cdot 2\frac{1}{2} = \) ________________
2. \(1\frac{7}{10} \cdot 5 = \) ________________

3. \(2\frac{2}{3} \cdot 4\frac{1}{5} = \) ________________
4. \(5\frac{1}{3} \cdot \frac{3}{8} = \) ________________

5. \(\frac{5}{9} \cdot 1\frac{2}{5} = \) ________________
6. \(12 \cdot 2\frac{3}{4} = \) ________________

7. \(3\frac{1}{2} \cdot 3\frac{1}{2} = \) ________________
8. \(\frac{1}{9} \cdot 3\frac{9}{10} = \) ________________

Solve.

9. The bottom of Zeyda’s jewelry box is a rectangle with length \(5\frac{3}{8}\) inches and width \(3\frac{1}{4}\) inches. What is the area of the bottom of the jewelry box?

10. The Patel family went apple picking. The number of red apples they picked was \(2\frac{2}{9}\) times the number of green apples they picked. If they picked 45 green apples, how many red apples did they pick?

11. The art museum is \(8\frac{1}{2}\) miles from Alison’s house. Alison has ridden her bike \(\frac{2}{3}\) of the way there so far. How far has she gone?
Add.

1. \(\frac{3}{8} + \frac{1}{6} \)
2. \(\frac{1}{5} + \frac{3}{4} \)
3. \(\frac{5}{6} + \frac{1}{8} \)

4. \(\frac{1}{3} + \frac{2}{7} \)
5. \(\frac{2}{3} + \frac{1}{9} \)
6. \(\frac{4}{5} + \frac{1}{10} \)

Use the Commutative Property to solve for \(n \).

7. \(55,207 + 87,331 = 87,331 + n \)
 \(n = \) ______

8. \(48.76 + 20.08 = 20.08 + n \)
 \(n = \) ______

Multiply. Simplify first if you can.

9. \(\frac{2}{3} \cdot \frac{3}{4} = \) ______
10. \(\frac{7}{10} \cdot \frac{6}{7} = \) ______
11. \(\frac{3}{5} \cdot \frac{5}{6} = \) ______

12. \(\frac{5}{6} \cdot \frac{12}{25} = \) ______
13. \(\frac{1}{2} \cdot \frac{4}{7} = \) ______
14. \(\frac{2}{9} \cdot \frac{3}{8} = \) ______

15. Stretch Your Thinking Complete the mixed number equation that is represented by the area model.

\[
\frac{1}{2} \cdot \underline{\text{______}} = \underline{\text{______}}
\]
Solve.

1. $\frac{3}{4} \times \frac{1}{8}$

2. $\frac{2}{3} - \frac{1}{9}$

3. $\frac{1}{10} + \frac{1}{5}$

4. $\frac{2}{7} \times 12$

5. $\frac{1}{5} + \frac{2}{3}$

6. $\frac{1}{4} + \frac{3}{8}$

7. $\frac{5}{7} \times \frac{5}{6}$

8. $\frac{11}{12} + 3$

9. $\frac{4}{9} - \frac{2}{9}$

10. $\frac{1}{3} \times \frac{1}{8}$

11. $\frac{7}{8} \times \frac{3}{4}$

12. $10 - \frac{1}{9}$

Solve.

13. Rodrigo’s fish bowl holds $\frac{7}{8}$ gallon of water. It is now $\frac{1}{2}$ full. How much water is in it?

14. Kenya jumped $7\frac{1}{6}$ feet. Janet jumped $6\frac{1}{3}$ feet. How much farther did Kenya jump?

15. A group of hikers walked $8\frac{7}{10}$ miles to Caribou Cave and then $5\frac{1}{5}$ miles to Silver Stream. How far did they walk altogether?

16. A recipe calls for $\frac{3}{4}$ cup of flour. Estevan wants to make $\frac{1}{3}$ of the recipe. How much flour will he need?

17. A truck was carrying $2\frac{1}{8}$ tons of sand. When it arrived, only $1\frac{1}{2}$ tons of sand were left. How much sand was lost along the way?
Subtract.

1. \(\frac{3}{4} - \frac{1}{6} \)
2. \(\frac{2}{9} - \frac{1}{10} \)
3. \(\frac{7}{8} - \frac{1}{4} \)
4. \(\frac{6}{7} - \frac{1}{3} \)
5. \(\frac{4}{5} - \frac{2}{3} \)
6. \(\frac{1}{2} - \frac{1}{8} \)

Estimate each sum or difference.

7. \(6.759 + 2.099 \)
8. \(44.25 - 21.76 \)
9. \(14.6 + 2.4 \)

Find each product by first rewriting each mixed number as a fraction.

10. \(\frac{5}{8} \cdot \frac{3\frac{1}{3}}{3} \)
11. \(4\frac{3}{5} \cdot 5 \)
12. \(1\frac{2}{5} \cdot 3\frac{4}{9} \)
13. \(6\frac{1}{5} \cdot \frac{5}{8} \)

14. **Stretch Your Thinking** Give an example that shows how to use the Distributive Property to multiply a number by a sum. All of the numbers you use should be mixed numbers or fractions.

Complete each fraction box.

1. \[
\begin{array}{|c|}
\hline
\frac{7}{8} \text{ and } \frac{3}{4} \\
\hline
> \frac{7}{8} > \frac{3}{4} \text{ or } \frac{7}{8} > \frac{6}{8} \\
+ \\
- \\
. \\
\hline
\end{array}
\]

2. \[
\begin{array}{|c|}
\hline
\frac{1}{2} \text{ and } \frac{3}{5} \\
\hline
> \\
+ \\
- \\
. \\
\hline
\end{array}
\]

Solve.

3. The Eagle Trucking Company must deliver \(\frac{7}{8}\) ton of cement blocks and \(\frac{5}{8}\) ton of bricks to one place. How much will this load weigh?

4. A truck carried \(3\frac{1}{3}\) tons of sand, but lost \(\frac{1}{4}\) ton along the way. How many tons of sand were delivered?

5. The trucking company also needs to deliver \(1\frac{2}{3}\) tons of oak logs and \(1\frac{7}{12}\) tons of maple logs. Which load weighs more?

6. In a load of \(\frac{3}{4}\) ton of steel rods, \(\frac{1}{8}\) of them are bent. How many tons of steel rods are bent?

7. The company delivered \(1\frac{3}{5}\) tons of bricks to one building site. They delivered \(2\frac{1}{2}\) times this much to a second site. What was the weight of the load the company delivered to the second site?
Multiply.

1. \(2,548 \times 5\)
2. \(21 \times 45\)
3. \(3,015 \times 6\)
4. \(33 \times 4\)
5. \(65 \times 87\)
6. \(215 \times 9\)

Find each product by first rewriting each mixed number as a fraction.

7. \(\frac{4}{9} \cdot \frac{2}{3} = \)
8. \(6\frac{1}{5} \cdot 10 = \)
9. \(\frac{3}{6} \cdot \frac{12}{13} = \)
10. \(\frac{5}{3} \cdot \frac{3}{5} = \)

Solve.

11. \(\frac{6}{7} - \frac{2}{7} = \)
12. \(\frac{4}{9} + \frac{2}{3} = \)
13. \(\frac{2}{3} \cdot \frac{9}{10} = \)
14. \(\frac{3}{5} \cdot \frac{5}{8} = \)
15. \(8 - \frac{1}{7} = \)
16. \(\frac{1}{6} + \frac{3}{8} = \)

17. **Stretch Your Thinking** Write and solve a word problem that requires multiplying two mixed numbers.

__
__
__
__
__
__
Predict whether the product will be greater than, less than, or equal to the second factor. Then compute the product.

1. \(\frac{4}{5} \cdot 6 = x \)
 Predict: \(x \bigcirc 6 \)
 Compute: \(x = \) __________

2. \(1 \frac{1}{9} \cdot 6 = x \)
 Predict: \(x \bigcirc 6 \)
 Compute: \(x = \) __________

3. \(\frac{10}{10} \cdot 6 = x \)
 Predict: \(x \bigcirc 6 \)
 Compute: \(x = \) __________

4. \(\frac{2}{2} \cdot \frac{5}{6} = x \)
 Predict: \(x \bigcirc \frac{5}{6} \)
 Compute: \(x = \) __________

5. \(\frac{5}{6} \cdot \frac{5}{6} = x \)
 Predict: \(x \bigcirc \frac{5}{6} \)
 Compute: \(x = \) __________

6. \(1 \frac{1}{3} \cdot \frac{5}{6} = x \)
 Predict: \(x \bigcirc \frac{5}{6} \)
 Compute: \(x = \) __________

Solve.

7. James is \(1 \frac{3}{7} \) times as tall as his brother. His brother is \(3 \frac{1}{2} \) feet tall.
 Is James’s height more or less than \(3 \frac{1}{2} \) feet?
 How tall is James?

8. South Middle School has 750 students. North Middle School has \(\frac{13}{15} \) times as many students as South.
 Does North Middle School have more or fewer than 750 students?
 How many students attend North Middle School?
Perry measured the foot length of four friends for a science fair experiment. Then, he made a bar graph to display his results.

1. How much longer is Brennen’s foot than Clara’s foot?

2. What is the difference between the longest foot and the shortest foot?

Solve.

3. \(\frac{7}{8} \cdot \frac{4}{9} \)

4. \(11 - \frac{3}{4} \)

5. \(\frac{4}{5} + \frac{7}{10} \)

6. \(\frac{9}{12} - \frac{5}{12} \)

7. \(\frac{7}{15} + \frac{2}{3} \)

8. \(\frac{5}{6} \cdot \frac{9}{11} \)

Complete each fraction box.

9. **Stretch Your Thinking** Write two multiplication equations using fractions and mixed numbers. Write one equation that will have a product greater than the first factor. Then write another equation that will have a product less than the first factor.
Divide

1. 5 ÷ 6 = ________________ 2. 9 ÷ \(\frac{1}{5} \) = ________________

3. 33 ÷ 30 = ________________ 4. 8 ÷ \(\frac{1}{6} \) = ________________

5. 3 ÷ 10 = ________________ 6. 4 ÷ \(\frac{1}{9} \) = ________________

7. 100 ÷ \(\frac{1}{6} \) = ________________ 8. 1 ÷ 100 = ________________

9. \(\frac{1}{5} \) ÷ 8 = ________________ 10. \(\frac{1}{8} \) ÷ 7 = ________________

11. \(\frac{1}{2} \) ÷ 9 = ________________ 12. \(\frac{1}{3} \) ÷ 5 = ________________

Solve.

13. Alexander is dividing oranges into eighths. He has 5 oranges. How many eighths will he have?

14. Carrie has 32 ounces of ice cream to divide equally among 10 people. How much ice cream will each person get?

15. Nayati wants to swim 50 miles this school year. She plans to swim \(\frac{1}{4} \) mile each day. How many days will it take her to swim 50 miles?

16. Eric has \(\frac{1}{3} \) of a watermelon to share equally with 3 friends. How much will each person get?

17. A gardener needs to pack 16 pounds of beans into 20 bags. He wants all the bags to weigh about the same. About how much will each bag weigh?
Add or subtract.

1. \[\frac{3}{4} - \frac{5}{8} \]
2. \[\frac{2}{3} + \frac{5}{9} \]
3. \[\frac{10}{2} - \frac{4}{5} \]

4. \[7 - \frac{1}{6} \]
5. \[\frac{3}{5} + \frac{5}{6} \]
6. \[\frac{8}{3} + \frac{3}{4} \]

Complete each fraction box.

7. \[\frac{2}{5} \text{ and } \frac{2}{7} \]
 - >
 - +
 - -
 -

Predict whether the product will be greater than, less than, or equal to the second factor. Then compute the product.

9. \[\frac{2}{3} \cdot 5 = x \]
 Predict: \(x \bigcirc 5 \)
 Compute: \(x = \)

10. \[\frac{3}{3} \cdot 5 = x \]
 Predict: \(x \bigcirc 5 \)
 Compute: \(x = \)

11. \[\frac{1}{6} \cdot 5 = x \]
 Predict: \(x \bigcirc 5 \)
 Compute: \(x = \)

12. **Stretch Your Thinking** Draw a diagram to show how many twelfths there are in 3. Describe a situation in which you would need to know how many twelfths there are in 3.

 \[\]
1. Consider the division problem $\frac{1}{2} \div 3$.
 Describe a situation this division could represent.

 Write an equation. Then solve.

2. A rectangle has an area of 12 square feet and a length of 5 feet. What is its width?

3. A tortoise must walk $\frac{1}{12}$ mile to visit a friend. He plans to break the journey into four equal parts with breaks in between. How long will each part of his journey be?

4. Harry worked 7 hours last week. This is $\frac{1}{3}$ as many hours as Aidan worked. How many hours did Aidan work?

5. Lin is a camp counselor. She is making small bags of trail mix for campers to take on a hike. She has 2 pounds of raisins and is putting $\frac{1}{8}$ pound in each bag. How many bags can she fill before she runs out of raisins?

6. Mr. Ramirez bought $\frac{1}{4}$ pounds of cashews. He divided the cashews equally among his three children. How much did each child get?
Add or subtract.

1. \(1\frac{1}{8} + 4\frac{2}{3}\)
2. \(6\frac{1}{4} - 4\frac{5}{6}\)
3. \(9\frac{1}{3} + 7\frac{8}{9}\)

4. \(5\frac{2}{7} + 5\frac{11}{14}\)
5. \(4 - 2\frac{2}{5}\)
6. \(6\frac{5}{8} + 3\frac{1}{2}\)

Predict whether the product will be greater than, less than, or equal to the second factor. Then compute the product.

7. \(\frac{5}{5} \cdot 9 = x\)
 Predict: \(x\)
 Compute: \(x = _______\)

8. \(\frac{7}{8} \cdot 9 = x\)
 Predict: \(x\)
 Compute: \(x = _______\)

9. \(1\frac{3}{5} \cdot 9 = x\)
 Predict: \(x\)
 Compute: \(x = _______\)

10. \(\frac{11}{12} \cdot \frac{4}{5} = x\)
 Predict: \(x\)
 Compute: \(x = _______\)

11. \(\frac{6}{6} \cdot \frac{4}{5} = x\)
 Predict: \(x\)
 Compute: \(x = _______\)

12. \(\frac{2}{5} \cdot \frac{4}{5} = x\)
 Predict: \(x\)
 Compute: \(x = _______\)

Divide.

13. \(6 \div \frac{1}{4} = _______\)
14. \(2 \div 3 = _______\)
15. \(10 \div 3 = _______\)

16. \(200 \div \frac{1}{4} = _______\)
17. \(\frac{1}{4} \div 8 = _______\)
18. \(\frac{1}{7} \div 6 = _______\)

19. **Stretch Your Thinking** Harrison is playing a board game that has a path of 100 spaces. After his first turn, he is \(\frac{1}{5}\) of the way along the spaces. On his second turn, he moves \(\frac{1}{4}\) fewer spaces than he moved on his first turn. On his third turn, he moves \(1\frac{1}{4}\) times as many spaces than he moved on his first turn. What space is he on after three turns?
Solve.

1. $5 \cdot \frac{1}{3} =$
2. $5 \div \frac{1}{3} =$
3. $\frac{1}{8} \div 2 =$
4. $27 \div 10 =$
5. $5 \div \frac{1}{100} =$
6. $12 \cdot \frac{1}{9} =$
7. $\frac{3}{5} \cdot \frac{10}{27} =$
8. $16 \div \frac{1}{4} =$
9. $\frac{1}{5} \div 10 =$
10. $10 \div \frac{1}{5} =$
11. $\frac{1}{8} \cdot 14 =$
12. $18 \div 20 =$

Tell whether you need to multiply or divide. Then solve.

13. A dime weighs about $\frac{1}{12}$ ounce. Jody has 1 pound (16 ounces) of dimes. About many dimes does she have?

14. Maddie has 180 coins. Of these coins, $\frac{1}{12}$ are dimes. About how many dimes does she have?

15. A rectangle has length 3 feet and width $\frac{1}{4}$ foot. What is the area of the rectangle?

16. A rectangle has area 3 square feet and width $\frac{1}{2}$ foot. What is the length of the rectangle?

17. Nisha wants to study 5 hours for the spelling bee. If she studies $\frac{1}{3}$ hour per night, how many nights will she have to study?
Multiply.

1. \(134 \cdot 5 = \)
2. \(44 \cdot 21 = \)
3. \(7 \cdot 57 = \)

4. \(4,507 \cdot 3 = \)
5. \(36 \cdot 76 = \)
6. \(1,928 \cdot 6 = \)

Divide.

7. \(\frac{1}{9} \div 2 = \)
8. \(100 \div \frac{1}{3} = \)
9. \(\frac{1}{5} \div 4 = \)

10. \(4 \div 5 = \)
11. \(12 \div 5 = \)
12. \(8 \div \frac{1}{7} = \)

Write an equation. Then solve.

13. Marc is running 5 kilometers at track practice. He decides to break the run into 3 equal lengths. How long will each length be?

14. Stretch Your Thinking Using a whole number and a fraction as factors, write a multiplication equation with a product less than the whole number factor. Draw a picture to show how the product is less than the whole number factor.
Solve.

1. Dan’s Ice Cream comes in cartons of two sizes. The large carton holds \(4\frac{1}{2}\) pounds. The small carton holds \(1\frac{3}{4}\) pounds less. How much ice cream does the small carton hold?

2. Mac picked four baskets of blueberries. The weights of the berries in pounds are given below. Order the weights from lightest to heaviest.

\[
\begin{array}{cccc}
5 & 9 & 4 & 13 \\
4 & 10 & 5 & 20 \\
\end{array}
\]

3. Four cones of Dan’s Ice Cream hold \(\frac{1}{2}\) pound. How much ice cream does each cone hold?

4. If a dish of ice cream holds \(\frac{1}{4}\) pound, how many dishes can you get from a \(4\frac{1}{2}\)-pound carton of Dan’s Ice Cream?

Solve. Give your answer in simplest form.

5. \(3 \div \frac{1}{5} = \) ____________

6. \(1\frac{3}{4} + \frac{11}{16} = \) ____________

7. \(\frac{9}{14} \cdot 2\frac{1}{3} = \) ____________

8. \(2\frac{3}{5} \cdot 6 = \) ____________

9. \(\frac{1}{3} + \frac{3}{5} = \) ____________

10. \(\frac{5}{6} + \frac{8}{9} = \) ____________

11. \(\frac{1}{8} \div 4 = \) ____________

12. \(\frac{2}{5} - \frac{1}{10} = \) ____________

13. \(3\frac{5}{7} - 1\frac{1}{2} = \) ____________

14. \(\frac{7}{8} \cdot \frac{2}{7} = \) ____________
Use benchmarks of 0, $\frac{1}{2}$, and 1 to estimate the sum or difference. Then find the actual sum or difference.

1. $\frac{5}{10} + \frac{4}{9}$
 Estimate: ________
 Sum: ________

2. $\frac{13}{14} - \frac{3}{7}$
 Estimate: ________
 Difference: ________

3. $\frac{8}{9} - \frac{7}{8}$
 Estimate: ________
 Difference: ________

Write an equation. Then solve.

5. A rectangle has an area of 20 square feet and a length of 6 feet. What is its width?

6. Bailey attends gymnastics practice for 8 hours each week. This is $\frac{1}{4}$ the number of hours that the gym is open for practice. How many hours is the gym open for practice?

Solve.

7. $\frac{1}{4} \div 3 = ________$

8. $\frac{1}{4} \cdot 3 = ________$

9. $14 \cdot \frac{1}{6} = ________$

10. Stretch Your Thinking How is solving $\frac{1}{8} \div 5$ different from solving $\frac{1}{8} \cdot 5$?

Show your work.

© Houghton Mifflin Harcourt Publishing Company
These graphs show the instruments in two different high school marching bands.

Carter School Marching Band

1/3 percussion
4/15 woodwind
2/5 brass

Reagan School Marching Band

1/3 woodwind
1/6 percussion
1/2 brass

Solve. Use the circle graphs.

1. The Reagan School Marching Band has three percussion musicians. How many musicians altogether are in the band?

2. There are 30 musicians in the Carter School Marching Band. How many of them play brass instruments?

Suppose both bands decide to combine and perform as one band.

3. What fraction of the band members will play a brass instrument?

4. What fraction of the band members will play a percussion instrument?

5. What fraction of the band members will play a woodwind instrument?
Solve. Explain how you know your answer is reasonable.

1. James’s garden has a length of \(12\frac{1}{4}\) feet and a width of \(9\frac{2}{3}\) feet. What length of fencing will he need to surround his garden?

Answer: _______________________________

Why is the answer reasonable?

Solve.

2. \(\frac{1}{11} \div 3 = \) _______

3. \(6 \div \frac{1}{3} = \) _______

4. \(\frac{2}{3} \cdot \frac{5}{7} = \) _______

5. \(\frac{1}{12} \div 5 = \) _______

6. \(7 \cdot \frac{1}{8} = \) _______

7. \(\frac{1}{5} \cdot 12 = \) _______

Solve.

8. Kayla packs 4 boxes that weigh \(\frac{1}{6}\) pound altogether. What does each box weigh?

9. Mrs. Blackwell put \(4\frac{2}{3}\) grams on the scale during a lab in science class. Then, she added \(2\frac{5}{6}\) grams to the scale. How many grams are on the scale in all?

10. **Stretch Your Thinking** If you start with 1 and repeatedly multiply by \(\frac{1}{2}\), will you reach 0? Explain why or why not.

4-1

Solve.

1. \[40 \times 2 \]
2. \[400 \times 2 \]
3. \[400 \times 20 \]
4. \[4000 \times 2 \]
5. \[80 \times 60 \]
6. \[800 \times 60 \]
7. \[800 \times 6 \]
8. \[80 \times 600 \]
9. \[70 \times 20 \]
10. \[900 \times 40 \]
11. \[800 \times 70 \]
12. \[6000 \times 7 \]

13. A tortoise walks 27 miles in a year. At this rate, how many miles will this tortoise walk in 10 years?

14. If the tortoise lives to be 100 years old, how many miles will it walk during its lifetime?

15. Every month, Paolo earns $40 for walking his neighbor’s dog after school. How much does he earn from this job in one year?

16. There are 60 seconds in a minute and 60 minutes in an hour. How many seconds are there in an hour?

17. An elephant eats about 2,500 pounds of food in 10 days. About how much food does an elephant eat in 1,000 days?

Show your work.
Write the multiplier or divisor for each pair of equivalent fractions.

1. \(\frac{4}{5} = \frac{12}{15} \)
 Multiplier = _______ Divisor = _______

2. \(\frac{25}{60} = \frac{5}{12} \)
 Multiplier = _______ Divisor = _______

3. \(\frac{12}{20} = \frac{3}{5} \)
 Divisor = _______

4. \(\frac{2}{3} = \frac{20}{30} \)
 Multiplier = _______ Divisor = _______

5. \(\frac{27}{36} = \frac{3}{4} \)
 Multiplier = _______ Divisor = _______

6. \(\frac{1}{8} = \frac{7}{56} \)
 Multiplier = _______

Solve.

7. Jordan shoots 100 3-point shots per basketball practice. She makes 44 of these shots. What decimal represents the number of shots she makes?

8. At a county fair, 9 people out of 1,000 earned a perfect score in a carnival game. What decimal represents the number of people who earned a perfect score?

Solve.

9. \(\frac{1}{6} \cdot 60 = \) _______

10. \(\frac{1}{3} \cdot 21 = \) _______

11. \(\frac{1}{9} \) of 81 = _______

12. \(\frac{1}{3} \cdot 24 = \) _______

13. \(\frac{1}{5} \) of 60 = _______

14. \(\frac{1}{8} \cdot 16 = \) _______

15. **Stretch Your Thinking** Using a multiple of ten for at least one factor, write an equation with a product that has four zeros.

Solve.

1. \[60 \times 40\]
2. \[70 \times 40\]
3. \[700 \times 60\]
4. \[300 \times 50\]
5. \[40 \times 50\]
6. \[900 \times 30\]
7. \[400 \times 80\]
8. \[200 \times 50\]
9. \[300 \times 200\]

The table shows the sizes of Farmer Reuben’s fields. Use the table and a separate sheet of paper to help you answer each question.

<table>
<thead>
<tr>
<th>Field</th>
<th>Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>Corn Field</td>
<td>400 feet by 60 feet</td>
</tr>
<tr>
<td>Wheat Field</td>
<td>700 feet by 200 feet</td>
</tr>
<tr>
<td>Barley Field</td>
<td>200 feet by 200 feet</td>
</tr>
</tbody>
</table>

10. What is the area of the corn field?

11. What is the area of the wheat field?

12. What is the area of the barley field?

13. How many square feet of land did Farmer Reuben plant in all?
Compare.

1. $\frac{5}{8} \bigcirc \frac{5}{7}$
2. $\frac{3}{4} \bigcirc \frac{5}{6}$
3. $\frac{9}{10} \bigcirc \frac{8}{9}$
4. $\frac{3}{8} \bigcirc \frac{5}{8}$
5. $\frac{1}{7} \bigcirc \frac{1}{8}$
6. $\frac{4}{5} \bigcirc \frac{4}{7}$

Multiply.

7. $\frac{5}{6} \cdot 36 = \underline{\hspace{2cm}}$
8. $\frac{1}{8} \cdot 40 = \underline{\hspace{2cm}}$
9. $\frac{2}{5} \cdot 60 = \underline{\hspace{2cm}}$

10. $\frac{2}{3} \cdot 33 = \underline{\hspace{2cm}}$
11. $\frac{3}{4} \cdot 36 = \underline{\hspace{2cm}}$
12. $\frac{2}{9} \cdot 45 = \underline{\hspace{2cm}}$

Solve.

13. 50×2
14. 500×2
15. $5,000 \times 2$
16. 60×40
17. 600×40
18. 600×4

19. **Stretch Your Thinking** Explain how to predict the number of zeros in the product for the expression $600 \cdot 500$.

 __
 __
 __
Solve the first problem with Place Value Sections.
Solve the other problems using any method you like.
Use a separate sheet of paper.

1. \[46 \times 73 \]

2. \[84 \times 19 \]

3. \[67 \times 53 \]

4. \[91 \times 28 \]

Solve.

5. Kamini needs to know the area of her yard so that she can buy the right amount of grass seed. The yard is 26 feet by 19 feet. What is the area of Kamini’s yard in square feet?

6. A restaurant has 16 crates of juice. Each crate holds 12 gallons of juice. How many gallons of juice are there altogether?

7. Mr. Jackson is taking 23 students to see a movie. Tickets for the movie cost 75 cents. How much money will Mr. Jackson spend on student tickets?

8. There are usually 20 school days in a month. Grace has band practice for 60 minutes every day after school. How many minutes does she usually practice each month?
Compare. Write > (greater than) or < (less than).

1. $0.7 \bigcirc 0.71$
2. $0.2 \bigcirc 0.02$
3. $0.76 \bigcirc 0.68$
4. $0.31 \bigcirc 0.43$
5. $0.21 \bigcirc 0.12$
6. $0.346 \bigcirc 0.348$

Estimate the sum or difference by rounding each mixed number to the nearest whole number. Then find the actual sum or difference.

7. $2\frac{1}{8} + 6\frac{6}{7}$
 Estimate: ________
 Sum: ________

8. $7\frac{9}{10} - 4\frac{1}{9}$
 Estimate: ________
 Difference: ________

9. $5\frac{7}{8} - 1\frac{1}{10}$
 Estimate: ________
 Difference: ________

10. $6\frac{3}{8} + 7\frac{2}{5}$
 Estimate: ________
 Sum: ________

Multiply.

11. 80×60
12. 200×30
13. 400×40

14. 600×50
15. 500×10
16. 300×90

17. **Stretch Your Thinking** Explain how to check multiplication using addition or division. Include an example in your explanation.
Solve. Use any method.

1. \(78 \times 26\)
2. \(93 \times 42\)
3. \(39 \times 84\)
4. \(56 \times 71\)

The table shows how many newspapers are delivered each week by three paper carriers. Use the table to answer the questions. Use 1 year = 52 weeks.

5. How many papers does Jameel deliver in a year?

6. How many papers does Clare deliver in a year?

7. How could you find how many papers Mason delivers in a year without doing any multiplication? What is the answer?

Solve.

8. Ray needs to know the area of his floor so he can buy the right amount of carpet. The floor is 21 feet by 17 feet. What is the area of the floor?

9. Maria is buying flowers. Each tray of flowers costs $24. If she buys 15 trays, what will the total cost be?
Copy each exercise. Then subtract.

1. \(9,000 - 865 = \) ______
2. \(105.66 - 98.53 = \) ______
3. \(45,688 - 5.65 = \) ______

Multiply. You do not need to simplify.

4. \(\frac{5}{7} \cdot \frac{1}{3} = \) ______
5. \(\frac{3}{5} \cdot \frac{1}{5} = \) ______
6. \(\frac{1}{5} \cdot \frac{2}{7} = \) ______

7. \(\frac{2}{3} \cdot 5 = \) ______
8. \(\frac{3}{4} \cdot \frac{3}{4} = \) ______
9. \(\frac{1}{2} \cdot \frac{5}{9} = \) ______

Solve the first problem with Place-Value Sections. Solve the other problems using any method you like.

10.

\[
\begin{array}{c|c|c|c}
54 & \times & 42 & \quad 40 & + & 2 \\
\hline
50 & + & 4 & 40 & + & 2 \\
\hline
\end{array}
\]

11. \(15 \times 42 = \) \[\text{Blank}\]
12. \(65 \times 81 = \) \[\text{Blank}\]
13. \(48 \times 24 = \) \[\text{Blank}\]

14. Stretch Your Thinking How is multiplying a 1-digit number and a 2-digit number the same as, and different from, multiplying two 2-digit numbers?

\[\text{Blank}\]
Multiply.

1. \[397 \times 9\]
2. \[723 \times 7\]
3. \[4,188 \times 3\]
4. \[4,294 \times 4\]
5. \[67 \times 82\]
6. \[56 \times 49\]
7. \[36 \times 29\]
8. \[87 \times 71\]
9. \[28 \times 27\]
10. \[37 \times 54\]
11. \[63 \times 91\]
12. \[73 \times 35\]
13. \[46 \times 83\]
14. \[57 \times 75\]
15. \[94 \times 47\]
16. \[66 \times 86\]

Solve.

17. Jamal is building a bed for his dog. The dimensions of the bed are 27 inches by 36 inches. What is the area of the bottom of the bed?

18. Mr. Battle drives 9 miles to work every day. He works 5 days a week. How many miles does he travel to and from work over 52 weeks?
Add or subtract.

1. \(\frac{3}{4} + 2\frac{1}{8}\)
2. \(4\frac{1}{5} - 2\frac{3}{10}\)
3. \(5\frac{2}{5} + 3\frac{1}{3}\)

4. \(6\frac{5}{6} + 2\frac{5}{12}\)
5. \(10 - 2\frac{3}{5}\)
6. \(3\frac{2}{5} + 1\frac{1}{15}\)

Find each product by first rewriting each mixed number as a fraction.

7. \(\frac{2}{9} \cdot 2\frac{2}{3} = \frac{_}{_}\)
8. \(1\frac{3}{5} \cdot 10 = \frac{_}{_}\)

9. \(4\frac{1}{4} \cdot 1\frac{1}{3} = \frac{_}{_}\)
10. \(2\frac{2}{5} \cdot 3\frac{3}{7} = \frac{_}{_}\)

Solve. Use any method.

11. \(64 \times 87 = \frac{_}{_}\)
12. \(76 \times 35 = \frac{_}{_}\)
13. \(53 \times 41 = \frac{_}{_}\)

14. \(24 \times 72 = \frac{_}{_}\)
15. \(19 \times 66 = \frac{_}{_}\)
16. \(58 \times 36 = \frac{_}{_}\)

17. **Stretch Your Thinking** Explain how to use mental math to find the product of 64 and 25.
Solve.

1. \(0.9 \times 7\)
2. \(0.6 \times 80\)
3. \(0.04 \times 9\)
4. \(0.05 \times 70\)
5. \(0.16 \times 7\)
6. \(7.0 \times 8\)
7. \(0.09 \times 30\)
8. \(0.07 \times 60\)
9. \(0.17 \times 81\)
10. \(940 \times 0.2\)
11. \(3.43 \times 7\)
12. \(0.29 \times 86\)
13. \(0.15 \times 196\)
14. \(1.57 \times 52\)
15. \(2.03 \times 121\)

Three runners started making a table for April to show how far they run every day, every week, and the entire month.

16. Finish the table for the runners.

<table>
<thead>
<tr>
<th>Runner</th>
<th>Miles Per Day</th>
<th>Miles Per Week</th>
<th>Miles in April</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cedric</td>
<td>0.6</td>
<td>(7 \times 0.6 =)</td>
<td>(30 \times 0.6 =)</td>
</tr>
<tr>
<td>Shannon</td>
<td>2.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Regina</td>
<td>1.75</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

17. Give the total miles in May for each runner below.

Cedric:
Shannon:
Regina:
Add.

1. \(\frac{2}{7} + \frac{1}{5}\)
2. \(\frac{1}{3} + \frac{2}{5}\)
3. \(\frac{1}{3} + \frac{1}{8}\)
4. \(\frac{1}{2} + \frac{1}{5}\)
5. \(\frac{4}{5} + \frac{1}{6}\)
6. \(\frac{5}{8} + \frac{1}{10}\)

Copy each exercise. Then add.

7. \(46\text{¢} + \$3.48 = \)
8. \(0.23 \text{ m} + 0.54 \text{ m} = \)
9. \(33\text{¢} + \$11 = \)

Multiply.

10. \(458 \times 3\)
11. \(893 \times 6\)
12. \(6,236 \times 7\)
13. \(6,982 \times 5\)

14. **Stretch Your Thinking** Marissa bought four bottles of water. Each bottle of water was 95 cents. Write an equation with the same product as the total cost but different factors.
Solve.

1. $0.3 \times 0.6 = \underline{______}$
2. $0.4 \times 0.07 = \underline{______}$
3. $0.03 \times 0.8 = \underline{______}$
4. $5 \times 0.07 = \underline{______}$
5. $0.02 \times 0.3 = \underline{______}$
6. $0.05 \times 0.9 = \underline{______}$

7. $1.8 \times 6 = \underline{______}$
8. $0.23 \times 40 = \underline{______}$
9. $0.14 \times 0.9 = \underline{______}$
10. $0.36 \times 0.8 = \underline{______}$

11. $1.4 \times 0.5 = \underline{______}$
12. $0.32 \times 51 = \underline{______}$
13. $0.6 \times 0.14 = \underline{______}$
14. $2.6 \times 0.9 = \underline{______}$

Solve using mental math.

15. $82 \times 0.01 = \underline{______}$
16. $385 \times 0.1 = \underline{______}$
17. $2,194 \times 0.01 = \underline{______}$

Solve.

18. Simon sold bottles of water at the marathon on Saturday for $0.75 per bottle. He sold 43 bottles. How much money did he earn?

19. Lauren has 9.9 meters of ribbon. She is cutting it into 100 equal pieces. That is the same as multiplying 9.9 by 0.01. How long will each piece of ribbon be?

20. A furlong is a unit of measure used in horse racing. Every year, horses race 10 furlongs in the Kentucky Derby. One furlong is equal to 0.125 mile. How long is the Kentucky Derby in miles?
Use the Distributive Property to rewrite each problem so it has only two factors. Then solve.

1. \((7 \times 200) + (7 \times 800) = \) ______________

2. \((44 \times 3) + (56 \times 3) = \) ______________

Multiply. Simplify first if you can.

3. \(\frac{5}{8} \times \frac{6}{7} = \) _____

4. \(\frac{1}{5} \times \frac{2}{9} = \) _____

5. \(\frac{1}{2} \times \frac{4}{9} = \) _____

6. \(\frac{2}{3} \times \frac{15}{16} = \) _____

7. \(\frac{1}{8} \times \frac{6}{7} = \) _____

8. \(\frac{9}{10} \times \frac{5}{6} = \) _____

Solve.

9. \(0.7 \times 6 = \) _____

10. \(0.02 \times 60 = \) _____

11. \(0.15 \times 34 = \) _____

12. \(0.41 \times 66 = \) _____

13. \(1.24 \times 6 = \) _____

14. \(260 \times 0.3 = \) _____

15. **Stretch Your Thinking** Explain where to place the decimal point in the product for the expression \(0.5 \times 0.03\).

Solve.

1. \(4.2 \times 8.1\)

2. \(9.4 \times 6.3\)

3. \(0.78 \times 4.7\)

4. \(0.05 \times 3.7\)

5. \(0.3 \times 1.52\)

6. \(0.8 \times 3.8\)

7. \(7.1 \times 4.5\)

8. \(2.4 \times 0.64\)

9. \(0.06 \times 5.7\)

10. \(9.9 \times 6.6\)

11. \(8.1 \times 5.7\)

12. \(0.07 \times 24.3\)

Complete. Name the property used.

13. \((4.3 \times 6.2) - (\underline{\text{______}} \times 1.1) =\)

\[4.3 \times (6.2 - 1.1)\]

14. \(8.9 \times (5.3 \times 3.4) =\)

\[(8.9 \times \underline{\text{______}}) \times 3.4\]

Solve.

15. Lester’s car can go 15.4 miles on 1 gallon of gas. How far can he go on 0.7 gallon?

16. Clara wants to cover the top of her jewelry box. The top of the box is a rectangle with a length of 9.4 cm and a width of 8.3 cm. What is the total area she wants to cover?
Solve. Explain how you know your answer is reasonable.

1. A rectangular sand box has a length of $5\frac{1}{3}$ feet and a width of $3\frac{3}{4}$ feet. What is its perimeter?

 Answer: ________________________________

 Why is the answer reasonable?

Solve.

2. Kelly babysits for $5\frac{5}{6}$ hours on the weekend. This is $2\frac{1}{12}$ hours more than she babysits during the week. How many hours does she babysit during the week?

3. Lucas is making a recipe that requires $\frac{1}{4}$ cup of wheat flour and $1\frac{7}{8}$ cups of white flour. Altogether, how many cups of flour does the recipe require?

Solve.

4. $0.5 \times 0.4 = \underline{\hspace{1cm}}$

5. $0.6 \times 0.09 = \underline{\hspace{1cm}}$

6. $0.08 \times 0.3 = \underline{\hspace{1cm}}$

7. 1.7×8

8. 0.55×50

9. 0.07×0.7

10. **Stretch Your Thinking** Write a decimal equation that has a product of 3.15. (Do not use 1 as a factor.)

Solve.

1. \[4.8 \times 100\]
2. \[2.9 \times 0.3\]
3. \[0.56 \times 20\]
4. \[0.69 \times 0.7\]
5. \[2.6 \times 3.4\]
6. \[3.8 \times 0.5\]
7. \[1.5 \times 4.9\]
8. \[3.4 \times 1.6\]

Complete the equations.

9. \[0.7 \times 10^1 = _\]
10. \[0.98 \times 10^1 = _\]
11. \[5.63 \times 10^1 = _\]
 \[0.7 \times 10^2 = _\]
 \[0.98 \times 10^2 = _\]
 \[5.63 \times 10^2 = _\]
 \[0.7 \times 10^3 = _\]
 \[0.98 \times 10^3 = _\]
 \[5.63 \times 10^3 = _\]
12. \[3.7 \times 10^1 = _\]
13. \[2.04 \times 10^1 = _\]
14. \[0.42 \times _ = 4.2\]
 \[3.7 \times 10^2 = _\]
 \[2.04 \times _ = 204\]
 \[0.42 \times 10^2 = _\]
 \[3.7 \times _ = 3,700\]
 \[2.04 \times 10^3 = _\]
 \[0.42 \times 10^3 = _\]

Solve.

15. The Sunrise Café gets tea bags in boxes of 1,000. If the café charges $1.75 for each cup of tea, and each cup of tea gets one tea bag, how much money does the café receive if they use a whole box of 1,000 teabags?

 \[\text{Show your work.}\]

16. If a box of tea bags costs $95, how much money does the café actually make after they have used up the box of tea and have paid for it?
Add or subtract.

1. $10 - \frac{33}{4}$
2. $\frac{5}{8} + \frac{3}{8}$
3. $6\frac{4}{5} - 1\frac{1}{5}$

4. $2\frac{1}{3} + 5\frac{1}{3}$
5. $1\frac{2}{9} + 3\frac{5}{9}$
6. $5\frac{1}{2} - \frac{1}{2}$

Copy each exercise. Then add or subtract.

7. $0.67 + 0.42 = ______$
8. $7 - 3.2 = ______$
9. $7.8 - 0.8 = ______$

Solve.

10. 4.3×6.7
11. 0.70×5.6
12. 0.32×2.4

13. **Stretch Your Thinking** Complete the equation $8.9 \cdot \square = 8,900$ using a power of ten. Explain how the product will change if the exponent changes.
Round to the nearest tenth.

1. 0.38
2. 0.94
3. 0.621
4. 0.087

Round to the nearest hundredth.

5. 0.285
6. 0.116
7. 0.709
8. 0.563

Write an estimated answer for each problem.
Then find and write each exact answer.

<table>
<thead>
<tr>
<th>Estimated Answer</th>
<th>Exact Answer</th>
</tr>
</thead>
<tbody>
<tr>
<td>9. 38 × 92 ≈ _____ × _____ ≈ _____</td>
<td>38 × 92 = _____</td>
</tr>
<tr>
<td>10. 8.1 × 4.2 ≈ _____ × _____ ≈ _____</td>
<td>8.1 × 4.2 = _____</td>
</tr>
<tr>
<td>11. 7.65 × 0.9 ≈ _____ × _____ ≈ _____</td>
<td>7.65 × 0.9 = _____</td>
</tr>
<tr>
<td>12. 3.8 × 6.02 ≈ _____ × _____ ≈ _____</td>
<td>3.8 × 6.02 = _____</td>
</tr>
<tr>
<td>13. 1.02 × 0.9 ≈ _____ × _____ ≈ _____</td>
<td>1.02 × 0.9 = _____</td>
</tr>
</tbody>
</table>

Solve.

14. A factory makes 394 motorcycles each week. If there are 52 weeks in a year, how many motorcycles will the factory make in a year?

 Estimate: _______________________

 Exact answer: ___________________

15. CDs are $15.25 each. How much will it cost to buy 3?

 Estimate: _______________________

 Exact answer: ___________________
Round to the nearest whole number.

1. 5.159 ______ 2. 12.7 ______ 3. 4.872 ______

Round to the nearest tenth.

4. 45.461 ______ 5. 3.12 ______ 6. 77.039 ______

Write an equation. Then solve.

7. A rectangle has an area of 48 square feet and a length of 10 feet. What is its width?

8. A length of string that is 22 feet long is being cut into pieces that are $\frac{1}{3}$ foot long. How many pieces will there be?

Show your work.

Solve.

9. \[100 \times 3.7\]

10. \[5.6 \times 0.4\]

11. \[0.14 \times 60\]

12. \[7.1 \times 2.9\]

13. \[6.8 \times 0.5\]

14. \[5.8 \times 1.2\]

15. Stretch Your Thinking Taylor estimated the music department would raise $1,100 for new uniforms by selling tickets to a performance next week. Each ticket will be $12.75. About how many tickets does the music department need to sell for Taylor’s estimate to be reasonable?
Find each product.

1. 57×0.31
2. 0.29×74
3. 7.6×8.3
4. 0.35×94
5. 4.8×0.92
6. 6.5×0.81
7. 84×0.13
8. 0.9×0.04

Solve. Check that your answers are reasonable.

9. Josefina is buying 10 pounds of salmon which costs $6.78 per pound. How much will the salmon cost?

10. It is 9.2 miles between Mr. Rossi’s place of work and his home. Because he comes home for lunch, he drives this distance 4 times a day. How far does Mr. Rossi drive each day?

11. Mr. Rossi works 20 days a month. How far does he drive in a month?

12. Gayle is saving to buy a bicycle. The bicycle costs $119.90. She has saved 0.7 of what she needs. How much has she saved so far?
Remembering

Multiply.

1. $98 \cdot 15 = \underline{_______}$
2. $658 \cdot 7 = \underline{_______}$
3. $54 \cdot 7 = \underline{_______}$

4. $3,147 \cdot 4 = \underline{_______}$
5. $5,609 \cdot 2 = \underline{_______}$
6. $66 \cdot 75 = \underline{_______}$

Write your answers as fractions.

7. $\frac{2}{9} \cdot 5 = \underline{_______}$
8. $\frac{3}{4} \cdot 9 = \underline{_______}$
9. $\frac{2}{3} \cdot 7 = \underline{_______}$

10. $\frac{7}{12} \cdot 15 = \underline{_______}$
11. $\frac{5}{8} \cdot 3 = \underline{_______}$
12. $\frac{5}{6} \cdot 9 = \underline{_______}$

Round to the nearest tenth.

13. $0.43 \underline{_______}$
14. $0.88 \underline{_______}$
15. $0.076 \underline{_______}$

Round to the nearest hundredth.

16. $0.456 = \underline{_______}$
17. $0.109 = \underline{_______}$
18. $0.541 = \underline{_______}$

19. Stretch Your Thinking Write a multiplication word problem using decimals for both factors. Then solve your word problem.

__
__
__
__

© Houghton Mifflin Harcourt Publishing Company
The life cycle of a butterfly has four stages. One stage is a caterpillar.

Using the length and height of the caterpillar shown, use the descriptions below to draw the adult butterfly that develops from the caterpillar. Remember, a tenth of a centimeter is a millimeter.

- The length of your butterfly should be 3.6 times the height of the caterpillar.
- The wingspan of your butterfly should be 1.75 times the length of the caterpillar.
Write a decimal number for each word name.

1. six hundredths

2. fourteen and eight thousandths

3. nine thousandths

4. five tenths

Solve.

5. \(\frac{1}{2} \div 10 = \) ______

6. \(\frac{1}{5} \cdot 4 = \) ______

7. \(12 \cdot \frac{1}{4} = \) ______

8. \(\frac{1}{9} \div 3 = \) ______

9. \(\frac{2}{3} \cdot \frac{2}{5} = \) ______

10. \(3 \div \frac{1}{6} = \) ______

Find each product.

11. \(0.48 \times 23 = \) ______

12. \(0.35 \times 13 = \) ______

13. \(0.86 \times 91 = \) ______

14. \(0.37 \times 6.5 = \) ______

15. \(0.22 \times 76 = \) ______

16. \(5.4 \times 3.2 = \) ______

17. **Stretch Your Thinking** Sarah is stringing insect beads to make a bracelet. The butterfly bead is 0.45 inch long and the ladybug bead has a length of 0.27 inch. She uses each type of insect bead and places them end to end. How many of each type of bead does she use to make a line of insect beads measuring 1.71 inches?
Complete each division. Check your answer.

1. 5)4,820
2. 8)7,548
3. 9)7,535
4. 3)2,958
5. 7)5,857
6. 6)5,556
7. 7)6,945
8. 8)5,624
9. 4)3,254

Solve. Use estimation to check the solution.

10. Mrs. Wong drove between Chicago and St. Louis 8 times last month. Altogether she drove 2,376 miles. How far is it from Chicago to St. Louis?

11. Jay has 6,200 beads. He is making bracelets with 9 beads each. How many bracelets can he make? How many beads will be left?

12. There are 5,280 feet in a mile. There are 3 feet in a yard. How many yards are there in a mile?

13. The Pencil Pal factory wraps pencils in packages of 6. Today there are 5,750 pencils to be packaged. How many packages will there be? How many pencils will be left over?
Write each fraction as a decimal.

1. \(\frac{2}{10} \)
2. \(\frac{556}{1,000} \)
3. \(\frac{6}{100} \)

4. \(\frac{17}{100} \)
5. \(\frac{23}{1,000} \)
6. \(\frac{5}{1,000} \)

7. \(\frac{1}{10} \)
8. \(\frac{33}{100} \)
9. \(\frac{85}{100} \)

Solve.

10. \(400 \times 70 \)
11. \(300 \times 30 \)
12. \(700 \times 40 \)

13. \(20 \times 50 \)
14. \(900 \times 50 \)
15. \(800 \times 30 \)

Solve.

16. Sarah is dividing pies into eighths. She has 4 pies. How many eighths will she have?

17. The track team plans to sprint 20 miles this school year. The runners will sprint \(\frac{1}{4} \) mile each day. How many days will it take them to sprint 20 miles?

18. Stretch Your Thinking Mrs. Thomas bought a bed for $1,548 and three armchairs. The bed cost 4 times as much as one armchair. How much did Mrs. Thomas spend altogether?
Divide.

1. \(39 \div 2,886\)
2. \(81 \div 7,533\)
3. \(68 \div 4,967\)
4. \(72 \div 4,968\)

5. \(28 \div 2,520\)
6. \(33 \div 1,287\)
7. \(46 \div 1,426\)
8. \(55 \div 990\)

Solve.

9. The lunchroom has enough seats for 168 students. Each class has 24 students. How many classes can eat in the lunchroom at the same time?

10. Mrs. Randall bought tickets to the art museum for all the fifth-grade students. Each ticket cost $12, and the total cost of the tickets was $1,152. How many fifth-grade students are there?

11. The Harmony Hotel has a total of 1,596 rooms. There are 42 rooms on each floor. How many floors does the Harmony Hotel have?

12. This year Martin earned $1,615 mowing lawns, shoveling driveways, and doing yardwork. This is 19 times as much as he earned last year. How much did Martin earn last year?
Solve. Use any method.

1. \(68 \times 21\)
2. \(36 \times 92\)
3. \(25 \times 44\)

Complete each division. Check your answer.

4. \(5 \div 1,267\)
5. \(3 \div 1,374\)
6. \(7 \div 4,618\)

7. Chloe sorts her beads. The number of red beads she has is \(\frac{5}{6}\) times the number of green beads. If she has 60 green beads, how many red beads does she have?

8. Brad plans to bike \(15\frac{3}{4}\) miles. He has gone \(\frac{2}{3}\) of the entire distance. How far has he gone?

9. **Stretch Your Thinking** Write and solve a division problem that divides a 4-digit number by a 2-digit number. How did you estimate the first digit of the quotient?
Divide.

1. $34 \div 7,276$
2. $85 \div 6,120$
3. $73 \div 4,309$
4. $38 \div 3,576$
5. $57 \div 4,722$
6. $26 \div 7,903$
7. $65 \div 5,918$
8. $69 \div 1,796$

Solve.

9. A carousel factory has 1,252 carousel horses. 48 horses are placed on each carousel. How many carousels can the factory build? How many horses will be left over?

How many horses will be left over?

10. Farmer Parson collected 1,183 chicken eggs this morning. He will put them in cartons that hold a dozen eggs each. How many cartons will he fill? How many eggs will be left over?

How many eggs will be left over?

Multiply. Simplify first if you can.

1. \(\frac{3}{4} \cdot \frac{12}{13} = \)

2. \(\frac{1}{4} \cdot \frac{3}{7} = \)

3. \(\frac{7}{8} \cdot \frac{4}{5} = \)

4. \(\frac{3}{8} \cdot \frac{4}{15} = \)

5. \(\frac{4}{5} \cdot \frac{10}{12} = \)

6. \(\frac{1}{5} \cdot \frac{5}{6} = \)

Complete the equations.

7. \(0.65 \times 10^1 = \)

8. \(0.8 \times 10^1 = \)

9. \(2.45 \times 10^1 = \)

\(0.65 \times 10^2 = \)

\(0.8 \times 10^2 = \)

\(2.45 \times 10^2 = \)

\(0.65 \times 10^3 = \)

\(0.8 \times 10^3 = \)

\(2.45 \times 10^3 = \)

Divide.

10. \(41 \div 3,444 = \)

11. \(36 \div 1,944 = \)

12. \(93 \div 7,254 = \)

13. In Marla’s school, \(\frac{6}{15}\) of the students do not ride the bus to school. Of these students \(\frac{5}{9}\) walk to school. What fraction of the students in Marla’s school walk to school?

14. **Stretch Your Thinking** Ben starts with a certain number of fruit chew packages. He puts 27 packages into each of 85 cases. He has 3 packages left. How many packages of fruit chews did Ben start with? Explain how you know.
Solve. Circle the choice that tells how you gave your answer.

1. A Ferris wheel holds 48 people. There are 823 people with tickets to ride the Ferris wheel. How many times will the Ferris wheel need to be run to give everyone a ride?

 whole number only round up mixed number decimal remainder only

2. Bananas cost 89 cents each at the fruit stand. Isabel has $11.75. How many bananas can she buy?

 whole number only round up mixed number decimal remainder only

3. The 15 members of a running club made $1,338 selling magazines. They will divide the money equally. How much should each runner get?

 whole number only round up mixed number decimal remainder only

4. There are 524 goldfish in the fish pond. They will be put in indoor tanks for the winter. If each tank holds 45 fish, how many tanks will be needed?

 whole number only round up mixed number decimal remainder only

5. Mr. Lopez made 339 ounces of strawberry jam. He plans to divide the jam equally among his 12 cousins. How many ounces of jam will each cousin get?

 whole number only round up mixed number decimal remainder only
Compare. Write > (greater than) or < (less than).

1. 0.6 0.06
2. 0.4 0.41
3. 0.87 0.8

4. 0.67 0.76
5. 0.44 0.39
6. 0.657 0.668

Divide.

7. 66\(\overline{)5,745}\)
8. 54\(\overline{)4,806}\)
9. 36\(\overline{)2,597}\)

Solve.

10. Martin asked friends to buy raffle tickets. On Saturday, he sold tickets to 5 of the 12 friends he asked. On Sunday, he sold tickets to 7 of the 9 friends he asked. On which day did he sell tickets to the greater fraction of the friends he asked?

11. Emma bought \(\frac{7}{8}\) yard of striped ribbon and \(\frac{8}{9}\) yard of solid ribbon. Which kind of ribbon did she buy more of?

12. Stretch Your Thinking Write and solve a division word problem for which the remainder is the answer.
1. \(7 \div 390\)
2. \(44 \div 2156\)
3. \(5 \div 7003\)

4. \(28 \div 1763\)
5. \(54 \div 4458\)
6. \(6 \div 3039\)

Solve.

7. This morning, a factory produced 6,000 cans of beans and packaged them in boxes of 48 cans. How many boxes were filled?

8. Six friends earned $645 for painting some rooms in a neighbor’s house. If they divide the money equally, how much will each friend get?

9. The floor of a ballroom has an area of 2,470 square feet. If the length of the floor is 65 feet, what is its width?

10. Felipe just started collecting stamps. He has 36 stamps so far. His uncle Carlo has 1,890 stamps in his collection. The number of stamps Carlo has is how many times the number Felipe has?
Multiply.

1. \[\frac{326}{2} \]
2. \[\frac{575}{5} \]
3. \[\frac{5,492}{8} \]
4. \[\frac{4,512}{9} \]
5. \[\frac{58}{43} \]
6. \[\frac{79}{52} \]
7. \[\frac{36}{21} \]
8. \[\frac{89}{67} \]

Solve. Give your answer in simplest form.

9. \[\frac{1}{8} \div 5 = _ \]
10. \[\frac{1}{4} \cdot \frac{2}{3} = _ \]
11. \[\frac{5}{6} - \frac{2}{3} = _ \]
12. \[6 \div \frac{1}{3} = _ \]
13. \[\frac{5}{6} + \frac{5}{8} = _ \]
14. \[6\frac{3}{4} \cdot \frac{1}{6} = _ \]

Solve. Circle the choice that tells how you gave your answer.

15. A rollercoaster holds 45 people. There are 387 people waiting to board the rollercoaster. How many times will the rollercoaster need to run to give everyone a ride?

whole number only
round up
mixed number
decimal
remainder only

16. Stretch Your Thinking I am a number less than 3,000. When you divide me by 32, my remainder is 30. When you divide me by 58, my remainder is 44. What number am I?
Solve.

1. \(9 \div 6.57\)
2. \(5 \div 36.41\)
3. \(4 \div 9.584\)

4. \(6 \div 207.9\)
5. \(23 \div 153.87\)
6. \(7 \div 654.5\)

7. \(45 \div 431.1\)
8. \(2 \div 7.006\)
9. \(16 \div 5.76\)

Solve.

10. Teresa bought 16 roses for $20.64. How much did she pay for each rose?

11. Barry’s dog Cubby is 1.26 meters long. Cubby is 7 times as long as Douglas’s guinea pig Taffy. How long is Taffy?

12. Farmer Sanchez has 1,408.86 acres of land. He will divide it into 27 equal fields for spring planting. How many acres will be in each field?

13. Six friends will stay at a cabin in the woods this weekend. The distance to the cabin is 148.5 miles. Each person will drive one sixth of the distance. How far will each person drive?
Solve.

1. Aiden buys a pair of jeans that costs $45.28. The sales tax that will be added to the cost of the jeans is $3.62. What is the total cost of the jeans?

2. When Madison got her kitten, Fluffy, he weighed 787.37 grams. He now weighs 2,085.8 grams more than he did when Madison first brought him home. How much does Fluffy weigh now?

Solve.

3. \[150 \times 0.6\]

4. \[3.41 \times 48\]

5. \[2.28 \times 5\]

6. \[0.9 \times 4\]

7. \[0.45 \times 86\]

8. \[0.03 \times 80\]

Divide.

9. \[33 \overline{)2,143}\]

10. \[9 \overline{)4,140}\]

11. \[4 \overline{)6,403}\]

12. **Stretch Your Thinking** What part of this problem needs to be changed to make it correct? Explain how you know.

 \[46 \div 8 = 6.75\]
Solve.

1. Nella and Lydia are hiking 15 miles today. After every 0.5 mile, they will stop and rest. How many times will they rest during the hike?

2. A cookie cutter shark is 0.4 meter long, and a thresher shark is 6 meters long. How many times as long as the cookie cutter shark is the thresher shark?

3. At a large wedding, the cakes were cut into hundredths, so each piece was 0.01 of a whole cake. If there were 12 cakes, how many pieces were there?

4. A millimeter is 0.001 of a meter. How many millimeters are there in 7 meters?

5. Paco saves $0.75 each day for a new bicycle helmet. He has saved $36. For how many days has Paco been saving?

Solve.

6. \(0.9 \div 63\)
7. \(0.08 \div 72\)
8. \(0.007 \div 42\)
9. \(0.6 \div 420\)

10. \(0.4 \div 372\)
11. \(0.6 \div 534\)
12. \(0.26 \div 884\)
13. \(0.71 \div 1,136\)
Solve.

1. Tyler is making a history project and needs two poster boards. He cuts one to measure 42.25 inches in length. He cuts the second to measure 34.75 inches in length. What is the difference between the two lengths of poster board?

2. Ella has $2,251.88 in her bank account. She withdraws $852. How much money is left in her bank account?

Solve.

3. 0.05×0.4

4. 2.5×5

5. 0.32×70

6. 0.2×0.8

7. 0.09×0.4

8. 0.6×0.09

Solve.

9. $5 \div 17.4$

10. $6 \div 416.46$

11. $7 \div 32.55$

12. **Stretch Your Thinking** Look at the division problem $112 \div 0.056$. Without solving, how many zeros will be in the quotient? How do you know?
Divide.

1. $0.07 \div 4.2$

2. $0.8 \div 2.4$

3. $0.05 \div 4.8$

4. $0.24 \div 2.064$

5. Circle the division that does not have the same answer as the others.

 - $54 \div 6$
 - $5.4 \div 0.6$
 - $0.54 \div 0.6$
 - $0.54 \div 0.06$
 - $0.054 \div 0.006$

Solve.

6. A beekeeper collected 7.6 liters of honey. She will pour it into bottles that each hold 0.95 liter. How many bottles will she fill?

7. A very small dinosaur, the microraptor, was only 1.3 feet long. One of the largest dinosaurs, the diplodocus, was about 91 feet long. How many times as long as the microraptor was the diplodocus?

8. Tomorrow, in the town of Eastwood, there will be a big race. The course is 5.25 kilometers long. A water station will be set up every 0.75 kilometer, including at the finish line. How many water stations will there be?

9. Marisol’s bedroom has an area of 29.76 square meters. The length of the room is 6.2 meters. What is its width?

Round to the nearest tenth.

1. 1.28
2. 14.21
3. 8.148

Round to the nearest hundredth.

4. 4.769
5. 45.124
6. 16.107

Solve.

7. \[7.7 \times 1.4\]
8. \[3.1 \times 0.05\]
9. \[5.79 \times 0.9\]

10. \[3.4 \times 8.8\]
11. \[3.5 \times 0.46\]
12. \[8.6 \times 0.90\]

Solve.

13. \[0.9 \div 36\]
14. \[0.006 \div 48\]
15. \[0.04 \div 32\]

16. \[0.7 \div 364\]
17. \[0.34 \div 2,210\]
18. \[0.83 \div 1,494\]

19. Stretch Your Thinking Must a decimal divisor and a decimal dividend have the same number of decimal places in order to have a whole-number quotient? Write a division equation using two decimal numbers to support your answer.
Divide.

1. \(0.7)\overline{35}\)
2. \(0.06)\overline{24}\)
3. \(0.8)\overline{64}\)
4. \(0.03)\overline{18}\)

5. \(3)\overline{33}\)
6. \(0.05)\overline{65}\)
7. \(12)\overline{72}\)
8. \(0.04)\overline{11.56}\)

9. \(8)\overline{216}\)
10. \(0.8)\overline{490.4}\)
11. \(28)\overline{2,380}\)
12. \(0.033)\overline{5.148}\)

Solve. Explain how you know your answer is reasonable.

13. Georgia works as a florist. She has 93 roses to arrange in vases. Each vase holds 6 roses. How many roses will Georgia have left over?

14. Julia is jarring peaches. She has 25.5 cups of peaches. Each jar holds 3 cups. How many jars will Julia need to hold all the peaches?

15. The area of a room is 114 square feet. The length of the room is 9.5 feet. What is the width of the room?
Add or subtract.

1. \[1\frac{1}{2} + 5\frac{5}{6} = \frac{3}{2} + \frac{35}{6} = \frac{9 + 35}{6} = \frac{44}{6} = 7\frac{1}{3}\]

2. \[2\frac{3}{5} + 5\frac{3}{10} = \frac{13}{5} + \frac{23}{10} = \frac{26 + 23}{10} = \frac{49}{10} = 4\frac{9}{10}\]

3. \[1\frac{1}{3} - \frac{1}{6} = \frac{4}{3} - \frac{1}{6} = \frac{8 - 1}{6} = \frac{7}{6} = 1\frac{1}{6}\]

4. \[7\frac{3}{10} + 2\frac{1}{5} = \frac{73}{10} + \frac{11}{5} = \frac{73 + 22}{10} = \frac{95}{10} = 9\frac{5}{10} = 9\frac{1}{2}\]

5. \[9\frac{1}{8} - 2\frac{3}{4} = \frac{73}{8} - \frac{11}{4} = \frac{73 - 22}{8} = \frac{51}{8} = 6\frac{3}{8}\]

6. \[12 - 5\frac{2}{3} = 12 - \frac{17}{3} = \frac{36 - 17}{3} = \frac{19}{3} = 6\frac{1}{3}\]

Find each product.

7. \[7.8 \times 1.2 = 9.36\]

8. \[3.3 \times 0.67 = 2.211\]

9. \[91 \times 0.49 = 44.69\]

10. \[0.25 \times 72 = 18\]

11. \[68 \times 0.17 = 11.56\]

12. \[0.76 \times 28 = 21.28\]

Divide.

13. \[0.08 \div 6.4 = \frac{1}{10} \div \frac{8}{5} = \frac{1}{10} \times \frac{5}{8} = \frac{1}{16} = 0.0625\]

14. \[0.8 \div 7.2 = \frac{4}{5} \div \frac{9}{4} = \frac{4}{5} \times \frac{4}{9} = \frac{16}{45} \approx 0.3556\]

15. \[0.07 \div 5.67 = \frac{7}{100} \div \frac{567}{100} = \frac{7}{100} \times \frac{100}{567} = \frac{7}{567} \approx 0.0123\]

16. \[0.58 \div 5.336 = \frac{58}{100} \div \frac{5336}{100} = \frac{58}{100} \times \frac{100}{5336} = \frac{58}{5336} \approx 0.011\]

17. \[0.9 \div 6.3 = \frac{9}{10} \div \frac{63}{10} = \frac{9}{10} \times \frac{10}{63} = \frac{9}{63} = \frac{1}{7} \approx 0.143\]

18. \[0.05 \div 1.75 = \frac{5}{100} \div \frac{175}{100} = \frac{5}{100} \times \frac{100}{175} = \frac{5}{175} = \frac{1}{35} \approx 0.029\]

19. **Stretch Your Thinking** Write a real world division problem for which you would drop the remainder.

© Houghton Mifflin Harcourt Publishing Company

116 UNIT 5 LESSON 9 Division Practice
Multiply or divide.

1. \(1.5 \times 5 = \) _____
2. \(0.4 \times 0.05 = \) _____
3. \(0.004 \times 0.03 = \) _____
4. \(0.55 \times 0.07 = \)
5. \(0.25 \times 0.12 = \)
6. \(22.3 \times 6.2 = \)
7. \(20.8 \times 0.26 = \)
8. \(0.3 \div 0.108 = \)
9. \(0.11 \div 407 = \)
10. \(0.67 \div 32.16 = \)
11. \(0.44 \div 105.6 = \)

For each problem, decide whether you need to multiply or divide. Then solve. Explain how you know your answer is reasonable.

12. Harriet makes yo-yos. She needs 38 inches of string for each yo-yo. How many yo-yos can she make with 875 inches of string? How many inches of string will be left over?

13. Roberto will save \(\frac{1}{6} \) of his allowance each day. If he gets $2.00 a day, about how much money will he save each day? Round your answer to the nearest penny.

14. Raisins cost $0.97 per pound. Michael bought $15.52 worth of raisins. How many pounds of raisins did he buy?
Multiply.

1. \(47 \times 7 \)
2. \(181 \times 3 \)
3. \(4,609 \times 5 \)
4. \(2,115 \times 6 \)

5. \(86 \times 75 \)
6. \(22 \times 15 \)
7. \(53 \times 25 \)
8. \(38 \times 36 \)

Divide.

9. \(0.06 \div 24 \)
10. \(0.3 \div 228.6 \)
11. \(0.08 \div 28.4 \)

Tell whether you need to multiply or divide. Then solve. Show your work.

12. A rectangle has an area of 4 square meters. The width is \(\frac{1}{5} \) meter. What is the length of the rectangle?

13. Audubon Preschool has 154 children in one age group. One seventh of those children arrive for early morning drop off. How many children arrive for early morning drop off?

14. Stretch Your Thinking Write a division word problem that requires dividing two decimals to solve. Write a multiplication equation to check your answer.
Dividing numbers involves dividends, divisors, and quotients.

Write a division problem (including the quotient) that satisfies all three statements.

1. The dividend is a one-digit whole number.
 The divisor is a one-digit whole number.
 The quotient is a one-digit whole number.

2. The dividend is a two-digit whole number.
 The divisor is a one-digit whole number.
 The quotient is a one-digit whole number.

3. The dividend is a two-digit whole number.
 The divisor is less than 1, and a number in tenths.
 The quotient is a two-digit whole number.

4. The dividend is a two-digit whole number.
 The divisor is greater than 1, and a number in tenths.
 The quotient is a two-digit whole number.

5. The dividend is a number in tenths.
 The divisor is a one-digit whole number.
 The quotient is a number in tenths.

6. The dividend is a decimal in hundredths.
 The divisor is a decimal in hundredths.
 The quotient is a one-digit whole number.

7. The dividend is a decimal in hundredths.
 The divisor is a decimal in hundredths.
 The quotient is a two-digit whole number.
Add or subtract.

1. \(21 + 1.08 = \) _____
2. \(0.62 + 0.49 = \) _____
3. \(0.06 + 0.5 = \) _____

4. \(6 - 0.09 = \) _____
5. \(3.01 - 0.8 = \) _____
6. \(12.05 - 8 = \) _____

Complete each fraction box.

7. \[
\begin{array}{|c|}
\hline
\frac{1}{3} \text{ and } \frac{4}{9} \\
\hline
> \\
+ \\
- \\
\cdot \\
\hline
\end{array}
\]

8. \[
\begin{array}{|c|}
\hline
\frac{2}{7} \text{ and } \frac{1}{4} \\
\hline
> \\
+ \\
- \\
\cdot \\
\hline
\end{array}
\]

Multiply or divide.

9. \(37.5 \times 3.5 = \) _____
10. \(0.63 \times 0.27 = \) _____
11. \(0.93 \div 567.3 = \) _____

12. **Stretch Your Thinking** Use the term *dividend*, *divisor*, or *quotient* to complete each sentence. Then write a division equation that fits the description.

 The _________________ is a decimal in thousandths.

 The _________________ is a decimal in thousandths.

 The _________________ is a two-digit whole number.

 Division problem: _________________
Write an equation and use it to solve the problem.
Draw a model if you need to.

1. Two professional baseball teams played a four-game series.
 Attendance for the first three games was 126,503 people,
 What was the Game 4 attendance if 171,318 people
 altogether attended the series?

2. In the past, shares of stock were bought and sold in fractions
 of a dollar. Suppose one share of stock, purchased for $72\frac{1}{4}$
 dollars per share, decreased in value to $66\frac{3}{8}$ dollars per share.
 What was the decrease in value per share?

3. Two shipping containers are being loaded into the cargo hold
 of a ship. One container weighs 2.3 tons. What is the weight
 of the other container if the total weight of both containers
 is 4.15 tons?

4. The heights of horses are often measured in units called hands.
 Abigail’s pony is 13\frac{1}{4} hands tall. How much taller is Jermaine’s
 horse if it is 16\frac{1}{2} hands tall?

5. Jake plays baseball with two wooden bats—one made from
 hickory and one made from white ash. What is the weight
 of his white ash bat if his hickory bat weighs 32.4 ounces,
 and both bats together weigh 64.33 ounces?

6. Seventeen fewer people attended the second basketball
 game of the season than attended the first game. One
 hundred ninety-two people attended the second game.
 How many people attended the first game?
Add or subtract.

1. \(\frac{4}{8} + \frac{5}{8} = \)
2. \(\frac{4}{5} + \frac{6}{5} = \)
3. \(\frac{6}{3} - \frac{5}{3} = \)

4. \(7 - \frac{1}{2} = \)
5. \(\frac{8}{4} - \frac{2}{4} = \)
6. \(\frac{2}{7} + \frac{4}{7} = \)

7. \(15 - \frac{3}{7} = \)
8. \(\frac{5}{4} + \frac{1}{8} = \)
9. \(\frac{11}{5} - \frac{9}{4} = \)

10. \(\frac{1}{6} + \frac{1}{3} = \)
11. \(\frac{2}{3} + \frac{7}{9} = \)
12. \(\frac{6}{7} + \frac{1}{14} = \)

Copy each exercise. Then subtract.

13. \(12,389 - 2.75 = \)
14. \(165.98 - 127.2 = \)
15. \(326.55 - 23.81 = \)

16. **Stretch Your Thinking** Garrett wants to buy a new soccer ball, a pair of shorts, and a pair of soccer shoes. The ball costs $12.55, the shorts cost $22.98, and the shoes cost $54.35. Garrett has $85.00. How much more money does Garrett need? Write an equation to solve the problem.
Solve each problem. Draw a model if you need to.

1. Spectators for a high school football game sit in bleachers along one side of the field. Altogether, the bleachers seat 1,152 spectators in 16 rows of equal length. How many spectators can be seated in one row of the bleachers?

2. How many periods of time, each \(\frac{1}{3} \) of an hour long, does a 8-hour period of time represent?

3. The area of a rectangular ceiling is 130.5 square feet, and one measure of the ceiling is 14.5 feet. What is the other measure of the ceiling?

4. Sorbet is a frozen dessert that is often made from fruit. How many portions, each weighing \(\frac{1}{10} \) of a kilogram, can a French dessert chef create from 3 kilograms of sorbet?

5. The family room floor in Zack’s home has a rectangular area rug that measures 6.5 feet by 9 feet. The floor is rectangular and measures 10 feet by 12 feet. What area of the floor is not covered by the rug?

6. A cargo van is carrying 20 identical steel cylinders. Each cylinder contains compressed oxygen. Altogether, the cylinders weigh \(\frac{1}{2} \) of a ton.
 a. In tons, what is the weight of each cylinder?

 b. One ton = 2,000 pounds. In pounds, what is the weight of each cylinder?
Remembering

Multiply.

1. \(\frac{6}{7} \cdot 42 = \) ______
2. \(\frac{1}{3} \cdot 36 = \) ______
3. \(\frac{4}{5} \cdot 15 = \) ______

4. \(\frac{1}{4} \cdot 28 = \) ______
5. \(\frac{5}{9} \cdot 81 = \) ______
6. \(\frac{3}{8} \cdot 72 = \) ______

Write an equation. Then solve.

7. There is \(\frac{1}{4} \) of a peach pie left after a family picnic. Four cousins share the leftover pie equally. What fraction of a whole pie will each cousin receive?

\[
\text{Show your work.}
\]

8. Tully has 24 stamps in his collection. This is \(\frac{1}{3} \) times the number Jordan has. How many stamps does Jordan have?

\[
\text{Write an equation to solve the problem. Draw a model if you need to.}
\]

9. Candace jumped 11.45 feet in a long jump competition. What is the length of Maria’s jump if she jumped 1.05 fewer feet than Candace?

\[
\text{Stretch Your Thinking} \quad \text{Ms. Jackson has $97.00 to spend on games for her classroom. She buys six board games that cost $11.95 each and a video game that costs $24.10. How much money does Ms. Jackson have left to buy more games? Write an equation to solve the problem.}
\]
Write a word problem for the equation. Draw a model to show the product.

1. \(\frac{2}{3} \cdot 3 = \frac{6}{3} \)

2. \(\frac{3}{4} \cdot \frac{1}{2} = \frac{3}{8} \)

3. \(2 \div \frac{1}{4} = 8 \)

Show your work.
Complete each fraction box.

1. \[
\begin{array}{|c|c|}
\hline
\frac{3}{4} \text{ and } \frac{5}{6} & \\
\hline
> & \\
+ & \\
- & \\
\cdot & \\
\hline
\end{array}
\]

2. \[
\begin{array}{|c|c|}
\hline
\frac{3}{5} \text{ and } \frac{8}{15} & \\
\hline
> & \\
+ & \\
- & \\
\cdot & \\
\hline
\end{array}
\]

Solve.

3. A $1,508 award is shared equally by 8 people. What is each person’s share of the award?

4. Felipe has 54 coins in his collection. His brother Pedro has 1,269 coins. The number of coins Pedro has is how many times the number his brother has?

Write an equation to solve the problem. Draw a model if you need to.

5. How many periods of time, each \(\frac{1}{6} \) of an hour long, does a 10-hour period of time represent?

6. Stretch Your Thinking Write a word problem for the following equation. \(\frac{4}{5} \cdot \frac{1}{4} + \frac{3}{5} = \frac{4}{5} \)
Write an equation to solve the problem. Use mental math or estimation to show that your answer is reasonable.

1. In a speed test, a computer took 12.4 seconds to complete one task, and 37.8 seconds to complete a more difficult task. How much time was needed to complete both tasks?

 Equation:

 Estimate:

2. To walk to school, Pablo first walks $\frac{1}{2}$ kilometer to Tanya’s house. Then Pablo and Tanya walk $\frac{3}{5}$ kilometer to school. How far does Pablo walk to school?

 Equation:

 Estimate:

3. Each Saturday morning, Andy works 4 hours and earns $\$34$. At that rate, what does Andy earn for each hour he works?

 Equation:

 Estimate:

4. Yuri completed a race in 0.88 fewer seconds than Josie. Josie’s time was 23.95 seconds. How long did it take Yuri to complete the race?

 Equation:

 Estimate:
Write an estimated answer for each problem. Then find and write each exact answer.

<table>
<thead>
<tr>
<th>Estimated Answer</th>
<th>Exact Answer</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. 41 \times 77 \approx \quad \times \quad \approx \quad 41 \times 77 = \quad</td>
<td></td>
</tr>
<tr>
<td>2. 3.8 \times 1.9 \approx \quad \times \quad \approx \quad 3.8 \times 1.9 = \quad</td>
<td></td>
</tr>
<tr>
<td>3. 7.3 \times 5.01 \approx \quad \times \quad \approx \quad 7.3 \times 5.01 = \quad</td>
<td></td>
</tr>
</tbody>
</table>

Divide.

4. \boxed{45} \div 6,733
5. \boxed{61} \div 7,892
6. \boxed{28} \div 3,123

Write a word problem for the equation. Draw a model to show the product.

7. \frac{5}{6} \cdot 4 = \frac{20}{6}

8. **Stretch Your Thinking** Kaley has \(\frac{23}{8}\) yards of fabric. She cuts and uses \(1\frac{1}{16}\) yards from the fabric. She estimates that less than 1 yard of fabric is left over. Is her estimate reasonable? Explain.
Solve each problem.

1. Michael has 21 T-shirts. One third of them are blue. How many of Michael's T-shirts are blue?

2. There are 476,092 fish in the city aquarium. That number of fish is 476,070 more fish than Nadia has in her aquarium. How many fish does Nadia have in her aquarium?

3. Anne-Marie has saved 9 dollars for a new coat. That is \(\frac{1}{6} \) as much money as she needs. How much does the coat cost?

4. Last year it rained on 63 days in Mudville. There were 7 times as many days of rain in Mudville as in Desert Hills. How many days did it rain in Desert Hills last year?

5. Maria wants to buy a new car. She will choose a green car or a silver car. The green car costs $16,898, and the silver car costs $1,059.75 less than the green car. What is the cost of the silver car?

6. At a country-music concert, 48 people played guitars. That number is 6 times as many as the number of people who played banjos. How many people at the concert played banjos?

7. There are 8 apples left on the table. There are \(\frac{1}{4} \) as many apples as bananas left on the table. How many bananas are there?
Add or subtract.

1. \(\frac{6}{7} + \frac{3}{14} \)
2. \(\frac{2}{3} - \frac{5}{9} \)
3. \(\frac{12}{5} - 8\frac{5}{10} \)

4. 11
5. \(7\frac{1}{5} + 1\frac{2}{3} \)
6. \(9\frac{3}{4} + 2\frac{5}{6} \)

7. Use the number line to find \(\frac{2}{3} \cdot \frac{4}{5} \).
 Label all the parts above and below. ______

8. Terrell runs two timed drills at practice. The first drill takes 33.5 seconds and the second drill takes 28.2 seconds. How much time does it take him to complete both drills?
 Equation:
 Estimate:

9. Stretch Your Thinking Maverick has a 12\(\frac{3}{4}\)-foot-long streamer to decorate a hallway at his school. He cuts off \(\frac{3}{8}\) of a foot from each end to make it fit the hallway. His principal asks him to make another streamer that is \(\frac{5}{6}\) as long. How long is the new streamer?
Solve. Draw a model if you will find it helpful.

1. A flagpole flying the Ohio state flag is \(\frac{9}{10} \) the height of a 30-foot-tall flagpole that is flying the U.S. flag. What is the height \((h)\) in feet of the flagpole flying the Ohio state flag?

2. The number of students in the Period 7 study hall at Jin’s school is 4 times the number of students in Jin’s home room. How many students \((s)\) are in the study hall if there are 16 students in Jin’s home room?

3. The enrollment at Roosevelt High School is 1,045 students, which is 5 times the enrollment of Truman Middle School. How many students \((s)\) are enrolled at Truman Middle School?

4. A truck weighs 5,400 pounds. An open-wheel race car weighs \(\frac{1}{4} \) as much. How much does the race car weigh?

5. Owen and Maya each studied for a test. Owen studied for 90 minutes and Maya studied for 0.5 times that length of time. Who studied more? Multiply to check your prediction.

 Prediction: __________________________

6. Sonia’s family has 2 children, which is \(\frac{2}{3} \) the number of children in Zeke’s family. Which family has more children? Divide to check your prediction.

 Prediction: __________________________
Copy each exercise. Then add or subtract

1. \(22.09 - 17 = \underline{\hspace{1cm}}\)
2. \(7 - 0.05 = \underline{\hspace{1cm}}\)
3. \(4.07 - 0.3 = \underline{\hspace{1cm}}\)

4. \(44 + 5.06 = \underline{\hspace{1cm}}\)
5. \(0.07 + 0.8 = \underline{\hspace{1cm}}\)
6. \(0.55 + 0.31 = \underline{\hspace{1cm}}\)

Solve.

7. \(0.5 \times 0.04 = \underline{\hspace{1cm}}\)
8. \(0.3 \times 0.7 = \underline{\hspace{1cm}}\)
9. \(0.07 \times 0.2 = \underline{\hspace{1cm}}\)

10. \(\frac{0.46}{\times 80}\)
11. \(\frac{0.06}{\times 0.8}\)
12. \(\frac{3.2}{\times 9}\)

Solve each problem.

13. A soccer team has 35 soccer balls. One fifth of the balls are made of leather. How many of the balls are leather?

14. There are 56 fifth graders who play basketball. That is 7 times the number of fifth graders who play tennis. How many fifth graders play tennis?

15. Stretch Your Thinking Samantha draws a hopscotch diagram on the sidewalk in front of her house. The diagram is 10 feet long. Her neighbor asks her to draw a 4-foot hopscotch diagram on a canvas mat. In simplest form, what fraction of the length of Samantha’s diagram is her neighbor’s diagram?
Write an equation and use it to solve the problem. Draw a model if you need to.

1. The Yukon River is 1,980 miles long, and twice as long as the Platte River. How many miles long \(l \) is the Platte River?

2. The height of the Empire State Building in New York City is 1,250 feet, and 364 fewer feet than the height of the World Financial Center building in Shanghai, China. What is the height \(h \) of the World Financial Center building?

3. Olivia is 48 inches tall, and \(\frac{2}{3} \) as tall as her brother Cameron. In inches, how tall \(t \) is Cameron?

4. Sydney is shopping for a new television. The cost of a 32-inch LCD flat screen is $149.95. The cost of 46-inch LED flat screen is $280.04 more. What is the cost \(c \) of the 46-inch LED flat screen television?

5. After arriving home from school, Luis read for \(\frac{1}{3} \) of an hour. If he reads for \(1 \frac{1}{6} \) hours after dinner, how many hours \(h \) will Luis have read altogether?

6. Each morning, Jared needs 60 minutes to get ready for school. Kiara needs \(\frac{7}{12} \) as much time as Jared. How many minutes does Kiara need each morning to get ready for school?

7. When compared to Tasha, Liam spent 20 additional minutes doing homework. Liam took 45 minutes to complete his homework. How long did it take Tasha?
6-7 Remembering

Solve.

1. \(\frac{6.9 \times 4.2}{2} \)
2. \(\frac{7.3 \times 0.90}{3} \)
3. \(\frac{5.8 \times 0.54}{3} \)

4. \(\frac{5.3 \times 0.08}{5} \)
5. \(\frac{0.7 \times 6.25}{6} \)
6. \(\frac{9.4 \times 1.7}{6} \)

Divide.

7. \(\frac{0.05 \div 4.5}{8} \)
8. \(\frac{0.3 \div 1.5}{9} \)
9. \(\frac{0.04 \div 2.32}{10} \)

10. \(\frac{0.64 \div 4.928}{11} \)
11. \(\frac{0.6 \div 5.43}{12} \)
12. \(\frac{0.08 \div 4.32}{12} \)

Solve. Draw a model if you will find it helpful.

13. The gymnasium at Audubon Middle School is \(\frac{5}{6} \) the height of a 30-foot-tall building that is next to the gymnasium. What is the height \((h) \) in feet of the gymnasium?

\[\frac{5}{6} \times 30 = h \]

14. Amiee's karate instructor has 595 students. That is \(5 \) times the number of students that her dance instructor has. How many students does her dance instructor have?

\[595 \div 5 = \text{students} \]

15. Stretch Your Thinking Draw a model that shows \(5 \cdot \frac{3}{5} = 3 \).
Solve each problem if possible. If a problem does not have enough information, write the information that is needed to solve the problem.

1. At the school bookstore, Quinn purchased a binder for $4.75 and 4 pens for $0.79 each. What was Quinn’s total cost (c)?

2. A school bus has 12 rows of seats, and 4 students can be seated in each row. How many students (s) are riding the bus if 11 rows are filled with students, and 2 students are riding in the twelfth row?

3. A group of 16 friends visited an amusement park. When they arrived, $\frac{3}{4}$ of the friends wanted to ride the fastest roller coaster first. How many friends (f) wanted to ride?

4. Zeke is shipping clerk for a large business. Today he spent 90 minutes preparing boxes for shipping. One box weighed 10 pounds and 7 boxes each weighed $3\frac{1}{2}$ pounds. What is the total weight (w) of the boxes?

5. A middle school faculty parking lot has 3 rows of parking spaces with 13 spaces in each row, and 1 row of 7 spaces. How many vehicles (v) can be parked in the faculty lot?

6. Rochelle’s homework always consists of worksheets. Last night, the average amount of time she needed to complete each worksheet was 15 minutes. How much time (t) did Rochelle spend completing worksheets last night?
Multiply.

1. \[56 \times 3\]
2. \[256 \times 7\]
3. \[3,801 \times 6\]
4. \[4,239 \times 9\]
5. \[84 \times 23\]
6. \[67 \times 18\]
7. \[88 \times 39\]
8. \[42 \times 45\]

Multiply or divide.

9. \[0.67 \div 752.5\]
10. \[0.21 \div 945\]
11. \[0.55 \times 0.30\]
12. \[32.5 \times 6.3\]

Write an equation and use it to solve the problem.

13. Lindsay is shopping for a new CD player. The cost of one CD player she is considering is $56.55. The cost of a higher priced CD player is $14.25 more. What is the cost \((c)\) of the higher priced CD player?

14. Stretch Your Thinking Use the equation below to write a word problem. Leave out one piece of information that is needed to solve the problem and describe the information that should have been included. \(b = (5 \cdot 6) + 10\)
6-9

Solve each problem.

1. After a deposit of $100, a withdrawal of $125, and a deposit of $24, the balance in a savings account was $27.28. What was the balance \(b \) before the deposits and withdrawal?

2. The charge for a plumbing repair was $29.60 for parts, \(1 \frac{1}{4} \) hours for labor at $56 per hour, and a $40 for the service call. What was the total cost \(c \) of the repair?

3. Ebi, Jose, Derell, and Asami measured their heights. Ebi’s height was 2.5 cm greater than Jose’s height. Jose’s height was 3.1 cm greater than Derell’s height. Derell’s height was 0.4 cm less than Asami’s height. Ebi is 162.5 cm tall. How tall \(t \) is Asami?

4. A school bus has 22 rows of seats, and 4 students can be seated in each row. Students riding in the bus have filled 19 rows of seats, and \(\frac{1}{2} \) of the remaining seats. How many seats on the bus are empty \(e \)?

5. Rosa is 13 years and 6 months old and her brother Malcolm is 11 years and 6 months old. Their great grandfather is 89 years old. How many years \(y \) older is the great grandfather than the combined ages of Rosa and Malcolm?

6. A riverfront business offers raft trips. The capacity of each raft is 4 people. Suppose 29 adults and 22 children would like to raft. If each raft is filled to capacity, how many people \(p \) will be aboard the last raft?

Show your work.
Solve.

1. \[500 \times 60 \]
2. \[500 \times 50 \]
3. \[900 \times 40 \]
4. \[30 \times 10 \]
5. \[200 \times 70 \]
6. \[300 \times 80 \]

Complete each division. Check your answer.

7. \[7 \div 3,451 \]
8. \[4 \div 2,155 \]
9. \[8 \div 4,122 \]
10. \[5 \div 1,242 \]
11. \[3 \div 2,114 \]
12. \[9 \div 5,778 \]

Write and solve an equation to solve the problem. If the problem does not have enough information, write the information that is needed to solve the problem.

13. Danny has $14.75, Jason has $22.10, and Trey has $87.45. How much more money \(m \) does Trey have than the combined amounts of the other two boys?

14. **Stretch Your Thinking** Write a multistep word problem in which the remainder is the solution. Write an equation that will solve it.
Solve each problem.

1. A savings account balance was $135.10 before a withdrawal of $60, a deposit of $22.50, and a withdrawal of $45. What was the balance \(b \) after the withdrawals and deposit?

2. The charge for a bicycle repair was $9.28 for parts, \(\frac{1}{4} \) hour of labor at $18 per hour, and a $2 shop fee. What was the total cost \(c \) of the repair?

3. While shopping at the school bookstore, Ric purchased 4 book covers for $1.25 each, and a pen that cost \(\frac{2}{5} \) as much as a book cover. What amount of change \(c \) did Ric receive if he paid for his purchase with a $10 bill?

4. A junior baseball team plays 16 games each summer. Last summer the team scored an average of 3.25 runs per game during the first half of the season. The team scored a total of 29 runs during the second half of the season. How many runs \(r \) were scored by the team last season?

5. Four family members compared their ages. Terell is 3 years younger than Danny. Danny is 1 year younger than Pablo. Pablo’s age is \(\frac{1}{3} \) Shaniqua’s age. How old is Terell \(t \) if Shaniqua is 36 years old?

6. Twenty-four soccer players, four coaches, and one equipment manager are traveling to a game in minivans. The capacity each minivan is 6 people. How many people \(p \) are riding in the last minivan if the other minivans are filled to capacity?
Multiply.

1. \(495 \times 7 \)
2. \(126 \times 6 \)
3. \(2,689 \times 3 \)
4. \(3,249 \times 8 \)
5. \(78 \times 21 \)
6. \(68 \times 55 \)
7. \(41 \times 33 \)
8. \(92 \times 89 \)

Divide.

9. \(0.7 \div 49 \)
10. \(0.03 \div 18 \)
11. \(0.4 \div 0.8 \)
12. \(0.09 \div 27 \)
13. \(0.5 \div 172.5 \)
14. \(0.06 \div 8.4 \)

Write an equation to solve the problem.

15. After a deposit of $250, a withdrawal of $312, and a deposit of $15, the balance in a savings account is $67.50. What was the balance \((b)\) before the deposits and withdrawal?

16. **Stretch Your Thinking** Write an equation that is represented by the following diagram.

 ![Diagram with stars]
The data below represent typical weights for five different breeds of adult male dogs. Make a bar graph to display the data. Choose an appropriate scale based on the weights of the dogs.

<table>
<thead>
<tr>
<th>Type of Dog</th>
<th>Adult Weight (in pounds)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Labrador retriever</td>
<td>65.25</td>
</tr>
<tr>
<td>German shepherd</td>
<td>$75\frac{1}{4}$</td>
</tr>
<tr>
<td>golden retriever</td>
<td>72.8</td>
</tr>
<tr>
<td>boxer</td>
<td>$70\frac{1}{2}$</td>
</tr>
<tr>
<td>standard poodle</td>
<td>64.3</td>
</tr>
</tbody>
</table>
Compare. Write > (greater than) or < (less than).

1. 0.05 0.5
2. 0.61 0.6
3. 0.77 0.7
4. 0.34 0.43
5. 0.28 0.29
6. 0.981 0.978

Solve the problem.

7. The charge for skating is $6.35 for skate rental, $18 per hour for 1\frac{1}{3}$ hours of skating, and an additional $1 fee. What is the total cost (c) for skating?

8. Stretch Your Thinking Make a table that lists the data from the bar graph.
1. Consider the expression $2\frac{1}{2} - \left(\frac{3}{4} + \frac{5}{8}\right)$.
 a. Which operation is done first, subtraction or addition?

 b. Write the computation in words.

2. Consider the expression $4.5 + 6 \times 0.1$.
 a. Which operation is done first, addition or multiplication?

 b. Write the computation in words.

Write the computation in words.

3. $7 \div \frac{1}{7}$

4. $8 - t$

5. $3.6 \div 0.4 - 0.5$

6. $5 \cdot (6 + 7)$

Write an expression for the words.

7. Add $\frac{1}{6}$ and $\frac{4}{9}$

8. Subtract the product of 5 and 11 from 100.

9. Divide 9 by 2 and then add 5.7.

10. Multiply 42 by the sum of 4 and r.
Complete each division. Check your answer.

1. \(3 \div 1,957\)
2. \(9 \div 3,103\)
3. \(7 \div 5,768\)

Divide.

4. \(69 \div 4,899\)
5. \(87 \div 2,001\)
6. \(52 \div 3,432\)

7. \(25 \div 1,175\)
8. \(38 \div 2,660\)
9. \(46 \div 2,438\)

Write an equation to solve the problem. Draw a model if you need to.

10. Jesse drives \(6\frac{3}{8}\) miles in a golf cart during a round of golf. Payton drives \(7\frac{3}{4}\) miles. How much farther does Payton drive?

11. **Stretch Your Thinking** Write the computation in words for an expression that uses all four operations (addition, subtraction, multiplication, and division). Then, write an expression for the words.
1. Follow the Order of Operations to simplify $27 \div (3 \cdot 3) + 17$

 Step 1 Perform operations inside parentheses.
 Step 2 Multiply and divide from left to right.
 Step 3 Add and subtract from left to right.

Simplify. Follow the Order of Operations.

2. $54 - 200 \div 4$
3. $0.8 \div (0.07 - 0.06)$
4. $3 \cdot 8 - 6 \div 2$

5. \(\left(\frac{3}{8} + \frac{1}{4}\right) \cdot 16\)
6. $64 + 46 - 21 + 29$
7. $72 \div (7 - 1) \cdot 3$

8. $0.8 - 0.5 \div 5 + 0.2$
9. $\frac{5}{6} - 4 \cdot \frac{1}{12}$
10. $5 \cdot 15 \div 3$

11. $32 \div (2.3 + 1.7) \cdot 3$
12. \((1\frac{1}{2} - \frac{3}{4}) \times \frac{1}{4}\)
13. $(6.3 - 5.1) \cdot (0.7 + 0.3)$

14. $12 \div 0.1 + 12 \div 0.01$
15. $\frac{1}{2} \cdot \frac{1}{2} \div \frac{1}{2}$
16. $10 - 4 + 2 - 1$
Solve.

1. $5 \div 44.3$

2. $2 \div 125.65$

3. $5 \div 34.565$

Write an equation to solve the problem. Draw a model if you need to.

4. The students of Turner Middle School are going on a field trip. There are 540 students attending. A bus can hold 45 students. How many buses are needed for the field trip?

5. The area of a rectangular court is 433.37 square meters, and the length of the court is 28.7 meters. What is width of the court?

Write the computation in words.

6. $5 \div \frac{1}{8}$

7. $2.4 \div 0.6 + 0.2$

8. Stretch Your Thinking Write step-by-step instructions for simplifying the following expression.

$$10 \cdot [60 \div (11 + 4)] - 3$$
Evaluate the expression.

1. \(m \div 0.3 \) for \(m = 1.8 \)
2. \(3\frac{1}{3} - x \) for \(x = \frac{5}{6} \)
3. \(50 - n \div 2 \) for \(n = 30 \)

4. \(x \cdot \frac{1}{2} \) for \(x = 10 \)
5. \(10 \cdot (20 + d) \) for \(d = 30 \)
6. \(120 \div (x \cdot 6) \) for \(x = 2 \)

7. \(a \cdot \frac{1}{3} + 3 \div \frac{1}{3} \) for \(a = 3 \)
8. \((0.15 - t) \cdot 100 \) for \(t = 0.02 \)
9. \(h \div 0.07 \) for \(h = 4.9 \)

10. Max bought a pair of jeans for $32 and three T-shirts for \(t \) dollars each.

 a. Write an expression for the total amount Max spent.

 b. If each T-shirt cost $9, how much did Max spend?

 b. Write an expression for Mischa’s age.

 c. If Zoe is 16 years old, how old are Luke and Mischa?
Solve.

1. $0.8 \div 64$
2. $0.008 \div 72$
3. $0.04 \div 16$

4. $0.5 \div 80$
5. $0.48 \div 1,536$
6. $0.76 \div 1,596$

Write a word problem for the equation. Draw a model to show the product.

7. $\frac{1}{2} \cdot \frac{4}{5} = x$

Simplify. Follow the Order of Operations.

8. $\frac{3}{5} - 2 \cdot \frac{1}{10}$
9. $40 \div (6 - 1) \cdot 3$
10. $\left(\frac{1}{2} + \frac{3}{8}\right) \cdot 24$

11. $0.4 \div (0.09 - 0.07)$
12. $66 - 150 \div 10$
13. $6 \cdot 5 - 9 \div 3$

14. **Stretch Your Thinking** Write a two-operation expression that equals 31 when evaluated for $x = 5$.
1. a. Write the first five terms of a numerical pattern that begins with 2 and then adds 3.

b. Write an expression for the sixth term of the pattern.

c. Write the sixth term.

2. a. Write the first five terms of a pattern that begins with 5, and then adds 5.

________________________ __________________ __________________

b. Write the first five terms of a pattern that begins with 20, and then adds 20.

________________________ __________________ __________________

c. Circle the corresponding pairs of terms in the patterns. How does the top term compare to the bottom term?

d. How does the bottom term compare to the top term?

Complete the table and use it for Problems 3 and 4.

<table>
<thead>
<tr>
<th>Number of Songs</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cost in Dollars</td>
<td>$0.99</td>
<td>$1.98</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

3. Describe a relationship shared by the corresponding terms.

__

__

4. What would be the cost of downloading 6 songs?

__
Solve.

1. Manny has 40 ounces of butter that he is cutting into 1.25-ounce slices. How many slices will he have?

2. Tracy is running in a 5.25-kilometer race on Saturday. A marathon is approximately 42 kilometers. How many times as long as Tracy's race is a marathon?

Write an equation to solve the problem. Use mental math or estimation to show that your answer is reasonable.

3. Each Saturday morning, Janie works 5 hours and earns $35.75. How much does Janie earn for each hour she works?

 Equation: ____________________________

 Estimate: ____________________________

4. 120 ÷ (t • 3) for \(t = 4 \)
5. \(m \cdot \frac{2}{3} \) for \(m = 5 \)
6. 4 • (2 + c) for \(c = 8 \)

7. \(7\frac{1}{2} - p \) for \(p = \frac{5}{6} \)
8. 60 - \(z \div 2 \) for \(z = 20 \)
9. \(x \div 0.9 \) for \(x = 3.6 \)

10. Stretch Your Thinking Create your own numerical pattern. Write the starting number, the rule, and the first 5 terms in the pattern. Then write an expression for the tenth term.

 __

 __

 __

 __

 __
Write an ordered pair to represent the location of each point.

1. point P _____
2. point Q _____
3. point R _____
4. point S _____

Plot and label a point at each location.

5. point W at (3, 9)
6. point X at (3, 5)
7. point Y at (9, 5)

Solve.

8. Suppose points W, X, and Y represent three vertices of rectangle WXYZ. Where should point Z be plotted?

Plot and label point Z. Then use a ruler to draw the rectangle.

9. What ordered pair represents the point at the center of the rectangle?

10. Use subtraction to find the lengths of segments WX and XY. Show your work.
Divide.

1. \(0.9)54\)
2. \(0.09)27\)
3. \(1.2)0.6\)

4. \(0.06)48\)
5. \(0.4)188.4\)
6. \(0.08)56\)

7. a. Write the first five terms of a numerical pattern that begins with 5 and then adds 6.

b. Write an expression for the sixth term of the pattern.

c. Write the sixth term.

8. **Stretch Your Thinking** List and graph four ordered pairs that are vertices of a rectangle with a perimeter of 16 units.
The \(add \ 3 \) table below shows a numerical pattern in the left column and the result of adding 3 in the right column.

<table>
<thead>
<tr>
<th>(add \ 3)</th>
<th>((x, y))</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>(__, __)</td>
</tr>
<tr>
<td>1</td>
<td>(__, __)</td>
</tr>
<tr>
<td>2</td>
<td>(__, __)</td>
</tr>
<tr>
<td>3</td>
<td>(__, __)</td>
</tr>
<tr>
<td>4</td>
<td>(__, __)</td>
</tr>
</tbody>
</table>

1. Complete the \(add \ 3 \) table.

2. Complete the \((x, y) \) table.

3. Each \((x, y) \) pair of terms represents a point.
 Graph and connect the points.

A freight train is traveling at a constant speed of 20 miles per hour.

4. Complete the table to show the distance the train will travel in 0, 1, 2, and 3 hours.

<table>
<thead>
<tr>
<th>Time (hr)</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Distance (mi)</td>
<td>20</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

5. Write the ordered \((x, y) \) pairs the data represent. Then graph and connect the points and extend the line.

\((__, __) \) \((__, __) \) \((__, __) \) \((__, __) \)

6. How far would you expect the train to travel in \(2 \frac{1}{2} \) hours? Explain your answer.
Multiply.

1. \[\begin{array}{c}
76 \\
\times 4
\end{array} \]

2. \[\begin{array}{c}
199 \\
\times 6
\end{array} \]

3. \[\begin{array}{c}
7,907 \\
\times 2
\end{array} \]

4. \[\begin{array}{c}
98 \\
\times 78
\end{array} \]

Use the coordinate plane below to answer the questions.

Write an ordered pair to represent the location of each point.

5. point A
6. point B
7. point C
8. point D

9. Stretch Your Thinking Give the ordered pair for a point E so that when the points B, D, E, and C are connected (in that order), a square is formed. Then, find the area of square BDEC.
1. On the coordinate plane below, plot and label points to design your own constellation. When you return to class, share your constellation with your class.

2. Write the name of your constellation.

3. Write the order in which your points are to be connected.

4. Explain how you can tell that two points will be on the same horizontal line just by looking at their coordinates.

5. Explain how you can tell that two points will be on the same vertical line just by looking at their coordinates.
Write and solve an equation to solve the problem.

1. A group of 25 classmates visits an amusement park. When they arrive, \(\frac{3}{5} \) of the students want to ride the fastest roller coaster first. How many students is this?

Nicole makes $8 per hour working at a daycare center.

2. Complete the table.

<table>
<thead>
<tr>
<th>Time (hr)</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Earnings ($)</td>
<td>8</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

3. Write the ordered \((x, y)\) pairs the data represent. Then graph and connect the points and extend the line.

4. How much money would Nicole make in \(2 \frac{1}{2}\) hours? Explain your answer.

5. **Stretch Your Thinking** Which points listed lie on the line? Which points do not lie on the line? Explain.

\((0, 5)\) \((1, 5)\) \((2, 4)\), \((3, 6)\), \((4, 3)\)
Complete.

1. $75 \text{ cm} = \underline{} \text{ m}$
2. $802 \text{ cm} = \underline{} \text{ m}$
3. $251 \text{ km} = 251,000 \underline{}$
4. $0.95 \text{ mm} = \underline{} \text{ cm}$
5. $0.46 \text{ cm} = \underline{} \text{ mm}$
6. $32 \text{ m} = \underline{} \text{ mm}$
7. $58 \text{ mm} = \underline{} \text{ m}$
8. $2,581 \text{ m} = \underline{} \text{ km}$
9. $35.6 \text{ mm} = \underline{} \text{ cm}$
10. $2.92 \text{ cm} = 29.2 \underline{}$

Solve.

Estimate:

12. On each of 3 days, Derrick rode 6.45 km to school, 150 meters to the library, and then 500 meters back home. How many kilometers did he ride for the 3 days altogether?

13. Lisa wants to frame her little brother’s drawing as a gift to her mother. The rectangular drawing is 43.5 centimeters by 934 millimeters. How many centimeters of wood framing will she need?

14. Marguerite is building a box from strips of wood. She needs 78 pieces of wood that are each 29 centimeters long. The wood comes in boards that are 6 meters long. How many boards will she need? Explain.
Multiply.

1. \[89 \times 7 \]
2. \[221 \times 3 \]
3. \[6,077 \times 6 \]
4. \[77 \times 65 \]

Suppose a plant grows at the rate shown in the table. Use the table to complete Exercises 5 and 6.

<table>
<thead>
<tr>
<th>Age (weeks)</th>
<th>Height (cm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>10</td>
</tr>
<tr>
<td>2</td>
<td>20</td>
</tr>
<tr>
<td>3</td>
<td>30</td>
</tr>
<tr>
<td>4</td>
<td>40</td>
</tr>
</tbody>
</table>

5. Write five ordered pairs that the data represent.

6. Graph the ordered pairs. What does each axis of the graph represent? Title the graph and label each axis.

7. Stretch Your Thinking Find the sum of 130 cm and 50 mm in meters. Show your work.
Complete.

1. \(5,811 \text{ mL} = \underline{\text{ } \text{ L}} \)
2. \(297 \text{ L} = \underline{\text{ } \text{ kL}} \)
3. \(1.09 \text{ kL} = 1,090 \underline{\text{ } \text{ }} \)
4. \(32,500 \text{ mL} = \underline{\text{ } \text{ L}} \)
5. \(53.1 \text{ L} = \underline{\text{ } \text{ mL}} \)
6. \(5.66 \text{ L} = \underline{\text{ } \text{ mL}} \)
7. \(2,848 \text{ mL} = \underline{\text{ } \text{ L}} \)
8. \(431 \text{ L} = \underline{\text{ } \text{ kL}} \)
9. \(0.56 \text{ L} = \underline{\text{ } \text{ mL}} \)
10. \(0.78 \text{ L} = 780 \underline{\text{ } \text{ }} \)

Solve.

11. Jennifer made 5 L of punch for her party. Her brother made another 750 mL. If they combine the two batches, how many 180 mL servings would they have? Would there be any punch left over? If so, how much?

12. On an average day, a horse might drink 50 L, a sheep might drink 4 L, and a chicken might drink 200 mL. How much water would a farm with 3 horses, 15 sheep, and 12 chickens need for a day?

13. Terrell has a water purifier for backpacking. It will purify 1 liter of water in 1 minute. How long would it take Terrell to purify enough water for 4 canteens that each hold 750 mL, and two that each hold 1.5 L?

14. The Institute of Medicine determined that a man should drink 3 liters of fluids a day and a woman should drink 2.2 liters. Mr. Morrison drank 880 mL of water at breakfast and Mrs. Morrison drank 700 mL. How much more will they both need to drink combined to meet the recommended amounts for the day?
Suppose the cost of sugar changes at the rate shown in the table. Use the table to complete Exercises 1 and 2.

<table>
<thead>
<tr>
<th>Weight (lb)</th>
<th>Cost ($)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>$0</td>
</tr>
<tr>
<td>1</td>
<td>$1.40</td>
</tr>
<tr>
<td>2</td>
<td>$2.80</td>
</tr>
<tr>
<td>3</td>
<td>$4.20</td>
</tr>
<tr>
<td>4</td>
<td>$5.60</td>
</tr>
</tbody>
</table>

1. Write five ordered pairs that the data represent.

2. Graph the ordered pairs. What does each axis of the graph represent? Title the graph and label each axis.

Complete the equation.

3. \(14 \text{ m} = \underline{\text{}} \text{ mm}\)

4. \(0.35 \text{ mm} = \underline{\text{}} \text{ cm}\)

5. \(790 \text{ cm} = \underline{\text{}} \text{ m}\)

6. \(0.88 \text{ cm} = \underline{\text{}} \text{ mm}\)

7. \(782 \text{ km} = 782,000 \underline{\text{}}\)

8. \(58 \text{ cm} = \underline{\text{}} \text{ m}\)

9. **Stretch Your Thinking** Shannon pours four different liquid ingredients into a bowl. The sum of the liquid ingredients is 8.53 liters. Two of her measurements are in liters and two of her measurements are in milliliters. Give an example of possible measurements for Shannon’s four liquids.
Complete.

1. 973 mg = 0.973 __________

2. 0.058 g = 58 __________

3. 10.64 kg = __________ g

4. 4.001 kg = __________ mg

5. 29 g = 0.029 __________

6. 7 mg = __________ g

7. 3.7 g = __________ mg

8. 84 g = __________ kg

Solve.

9. The mass of substances left in a sample after the liquid is evaporated is called the **total dissolved solids**. Kim split up 2 liters of water into three different samples and boiled all the liquid away in each. The masses of solids left in the three samples were 2.025 grams, 457 mg, and 589 mg. Using the table at the right, how should Kim classify the water?

<table>
<thead>
<tr>
<th>Total Dissolved Solids in 1 Liter of Solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>fresh</td>
</tr>
<tr>
<td>brackish</td>
</tr>
<tr>
<td>saline</td>
</tr>
</tbody>
</table>

10. Jamal watched his older brother Robert lift weights. The bar alone had a mass of 20 kg. On the bar he had two 11.4 kg weights, two 4.5 kg weights, and four 450 g weights. What mass was Robert lifting?

11. Barry bought 25 kg of fish-flavored cat food and 35 kg of chicken-flavored cat food for the cat rescue center. He is going to divide the cat food into packets of 300 grams. How many packets will he make?
Greyson rides his bike at a constant rate. In 30 minutes, Greyson can bike 7 miles.

1. Complete the table to show the distance Greyson can ride in 0, 30, 60, and 90 minutes.

<table>
<thead>
<tr>
<th>Time (min)</th>
<th>0</th>
<th>30</th>
<th>60</th>
<th>90</th>
</tr>
</thead>
<tbody>
<tr>
<td>Distance (mi)</td>
<td>7</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

2. Write the ordered (x, y) pairs the data represent. Then graph the points and extend the line.

$(__, __) (__, __) (__, __) (__, __)$

3. How far would you expect Greyson to ride in 105 minutes? Explain your answer.

Complete the equation.

4. $435 \text{ L} = \underline{\quad} \text{ kL}$

5. $6.71 \text{ L} = \underline{\quad} \text{ mL}$

6. $86,300 \text{ mL} = \underline{\quad} \text{ L}$

7. $109 \text{ L} = \underline{\quad} \text{ kL}$

8. $5,669 \text{ mL} = \underline{\quad} \text{ L}$

9. $30.8 \text{ L} = \underline{\quad} \text{ mL}$

10. $9.12 \text{ kL} = 9,120 \underline{\quad}$

11. $9,235 \text{ mL} = \underline{\quad} \text{ L}$

12. **Stretch Your Thinking** Write three measurements using grams and three measurements using milligrams that total 15.4 grams.

__

__
Complete.

1. 36 in. = _____ ft
2. 12 ft = _____ yd
3. 36 in. = _____ yd

4. _____ in. = 4 ft
5. _____ ft = 2 yd
6. _____ in. = 3 yd

7. _____ ft = 90 in.
8. _____ in. = 5 \(\frac{1}{2}\) ft
9. 6 yd = _____ in.

10. _____ yd = 432 in.
11. 1 \(\frac{1}{4}\) yd = _____ ft
12. 90 ft = _____ yd

Find the perimeter of each figure in feet.

13. \[P = __________\]

14. \[P = __________\]

Find the perimeter of each figure in yards.

15. \[P = __________\]

16. \[P = __________\]
Write an expression for the words.

1. Multiply 12 by the sum of 8 and t. ______________

2. Divide 10 by 4 and then subtract 6.2. ______________

3. Add the product of 7 and 10 to 80. ______________

4. Subtract \(\frac{1}{8} \) from \(\frac{5}{6} \). ______________

Simplify. Follow the Order of Operations.

5. \(12 - 7 + 9 - 2 \)
6. \(15 \div 0.3 + 6 \div 0.02 \)
7. \((2\frac{3}{8} - \frac{1}{4}) \times \frac{1}{5} \)

8. \(\frac{1}{6} \cdot \frac{1}{6} \div \frac{1}{6} \)

9. \((7.2 - 3.3) \cdot (0.5 + 0.5) \)

10. \(36 \div (6.6 + 2.4) \cdot 4 \)

Complete.

11. \(5 \text{ mg} = \) ______________ \(\text{ g} \)

12. \(13.45 \text{ kg} = \) ______________ \(\text{ g} \)

13. \(66 \text{ g} = 0.066 \) ______________

14. \(0.021 \text{ g} = 21 \) ______________

15. \(5.003 \text{ kg} = \) ______________ \(\text{ mg} \)

16. \(782 \text{ mg} = 0.782 \) ______________

17. **Stretch Your Thinking** Draw a figure composed of three different rectangles that has a perimeter of 140 yards. Use measurements in yards and feet to label the sides of your figure.
Complete.
1. $2 \text{ pt} = \underline{\hspace{2cm}} \text{ qt}$
2. $4 \text{ qt} = \underline{\hspace{2cm}} \text{ gal}$
3. $2 \text{ c} = \underline{\hspace{2cm}} \text{ pt}$
4. $3 \text{ qt} = \underline{\hspace{2cm}} \text{ pt}$
5. $1 \text{ qt} = \underline{\hspace{2cm}} \text{ c}$
6. $5 \text{ gal} = \underline{\hspace{2cm}} \text{ qt}$
7. $\underline{\hspace{2cm}} \text{ qt} = 52 \text{ c}$
8. $\underline{\hspace{2cm}} \text{ qt} = 46 \text{ pt}$
9. $112 \text{ c} = \underline{\hspace{2cm}} \text{ gal}$
10. $11 \frac{1}{2} \text{ gal} = \underline{\hspace{2cm}} \text{ qt}$
11. $112 \text{ c} = \underline{\hspace{2cm}} \text{ pt}$
12. $75 \text{ pt} = \underline{\hspace{2cm}} \text{ qt}$

Write a fraction.
13. What fraction of 1 gallon is 1 quart?
14. What fraction of 1 quart is 3 cups?

15. What fraction of 1 gallon is 5 cups?
16. What fraction of 1 pint is 1 cup?

Solve.
17. Cesar bought 2 bottles of juice that each hold 2 quarts and another bottle that holds $1 \frac{1}{2}$ gallons of juice. How many quarts of juice did he buy?

18. Samantha saw two bottles of ketchup at the store for the same price. One bottle contained 4 pints of ketchup, and the other contained 1.25 quarts of ketchup. Which bottle was the better bargain?

19. A pitcher is full of lemonade. Which unit of liquid volume best describes the amount of lemonade in the pitcher? Explain.
Divide.

1. $5\overline{)2,245}$
2. $6\overline{)3,277}$
3. $9\overline{)4,558}$

4. $56\overline{)1,344}$
5. $47\overline{)3,619}$
6. $23\overline{)2,047}$

7. $91\overline{)4,315}$
8. $62\overline{)4,030}$
9. $18\overline{)1,241}$

Complete.

10. 24 in. = _____ ft
11. 27 ft = _____ yd
12. 3 ft = _____ in.

13. _____ in. = 5 yd
14. _____ yd = 18 ft
15. _____ ft = 84 in.

16. 24 yd = _____ ft
17. 8 ft = _____ in.
18. _____ ft = 84 yd

19. Stretch Your Thinking What fraction of a gallon is 3 pints?
Complete.

1. 1 lb = ______ oz
2. 2 T = ______ lb
3. 32 oz = ______ lb
4. 1,000 lb = ______ T
5. 4 lb = ______ oz
6. 10,000 lb = ______ T

Write a mixed number in simplest form to represent the number of pounds equivalent to each number of ounces.

7. 40 oz = ______ lb
8. 50 oz = ______ lb
9. 44 oz = ______ lb
10. 68 oz = ______ lb
11. 22 oz = ______ lb
12. 94 oz = ______ lb

Solve.

13. At a garden center, grass seed sells for $8 per pound. Kalil spent $10 on grass seed. What amount of seed did he buy?

14. Two boxes of tea weigh 3 oz. The Tea Time Tasty Tea Company packs 112 boxes in a case of tea. How many pounds does each case of tea weigh?

15. Juli uses 12 ounces of cheese in her potato soup recipe. Her recipe yields 8 servings. If Juli needs enough for 20 servings, how many pounds of cheese will she need?

16. At a grocery store, salted peanuts in the shell cost 30¢ per ounce. Is $5.00 enough money to buy 1 pound of peanuts? If it is, what amount of money will be left over?
Complete the pattern.

1. $5 \times 10^1 = 5 \times 10 = \underline{\hspace{2cm}}$
2. $45 \times 10^1 = \underline{\hspace{2cm}} = 450$

 $5 \times 10^2 = 5 \times 100 = \underline{\hspace{2cm}}$

 $45 \times 10^2 = \underline{\hspace{2cm}} = 4,500$

 $5 \times 10^3 = 5 \times 1,000 = \underline{\hspace{2cm}}$

 $45 \times 10^3 = \underline{\hspace{2cm}} = 45,000$

 $5 \times 10^4 = 5 \times 10,000 = \underline{\hspace{2cm}}$

 $45 \times 10^4 = \underline{\hspace{2cm}} = 450,000$

3. $17 \times 10^1 = 17 \times 10 = \underline{\hspace{2cm}}$
4. $342 \times 10^1 = \underline{\hspace{2cm}} = 3,420$

 $17 \times 10^2 = 17 \times 100 = \underline{\hspace{2cm}}$

 $342 \times 10^2 = 342 \times 100 = \underline{\hspace{2cm}}$

 $17 \times 10^3 = 17 \times 1,000 = \underline{\hspace{2cm}}$

 $342 \times 10^3 = \underline{\hspace{2cm}} = 342,000$

 $17 \times 10^4 = 17 \times 10,000 = \underline{\hspace{2cm}}$

 $342 \times 10^4 = 342 \times 10,000 = \underline{\hspace{2cm}}$

Solve.

5. $8 \text{ qt} = \underline{\hspace{2cm}} \text{ pt}$
6. $2 \text{ qt} = \underline{\hspace{2cm}} \text{ c}$
7. $\underline{\hspace{2cm}} \text{ c} = 2 \text{ pt}$

8. $80 \text{ cups} = \underline{\hspace{2cm}} \text{ gal}$
9. $9\frac{1}{2} \text{ gal} = \underline{\hspace{2cm}} \text{ qt}$
10. $80 \text{ cups} = \underline{\hspace{2cm}} \text{ pt}$

11. $\underline{\hspace{2cm}} \text{ qt} = 24 \text{ cups}$
12. $\underline{\hspace{2cm}} \text{ pt} = 32 \text{ qt}$
13. $\underline{\hspace{2cm}} \text{ qt} = 25 \text{ pt}$

14. **Stretch Your Thinking** Divide 15 pounds of rice into four unequal measures using ounces.
1. Perry is growing maple saplings. After 3 weeks, he measured the saplings to the nearest quarter inch and drew this line plot with the data. Use the line plot to answer questions about the saplings.

 a. How many saplings were there?

 b. How many saplings were less than 9 inches tall?

 c. What is the combined height of all the saplings?

2. As a volunteer at the animal shelter, Uma weighed all the puppies. She made a list of the weights as she weighed them. The puppies weights were $3\frac{3}{4}$ lb, $4\frac{1}{4}$ lb, $3\frac{1}{2}$ lb, $3\frac{3}{4}$ lb, $3\frac{1}{4}$ lb, $3\frac{3}{4}$ lb, $3\frac{1}{2}$ lb, $4\frac{1}{4}$ lb, and $3\frac{3}{4}$ lb.

 a. Draw a line plot of the puppies’ weights.

 b. Use the line plot to write and answer a question about the data.
Write an equation to solve each problem.

1. At the school bookstore, Harrison purchases 3 notebooks for $2.50 each, 10 pens for $0.35 each, and 5 mechanical pencils for $0.89 each. By what amount \(a \) is the cost of the mechanical pencils greater than the cost of the pens?

2. This week an employee is scheduled to work 6 hours each day Monday through Friday, and \(3\frac{1}{2} \) hours on Saturday morning. If the employee’s goal is to work 40 hours, how many additional hours \(h \) must he work?

Complete.

3. \(6 \text{ T} = \quad \) lb
4. \(3 \text{ lb} = \quad \) oz
5. \(\quad \text{oz} = 5 \text{ lb} \)

6. \(5,000 \text{ lb} = \quad \) T
7. \(8 \text{ lb} = \quad \) oz
8. \(20,000 \text{ lb} = \quad \) T

Write a mixed number in simplest form to represent the number of pounds equivalent to each number of ounces.

9. \(66 \text{ oz} = \quad \) lb
10. \(52 \text{ oz} = \quad \) lb
11. \(24 \text{ oz} = \quad \) lb

12. \(76 \text{ oz} = \quad \) lb
13. \(82 \text{ oz} = \quad \) lb
14. \(46 \text{ oz} = \quad \) lb

15. **Stretch Your Thinking** List three different real world situations in which a line plot would be the best choice to organize and display the data.

© Houghton Mifflin Harcourt Publishing Company
Find the perimeter and the area of the rectangle.

1. \(P = \) \(A = \)

2. \(P = \) \(A = \)

Find the side length of the rectangle.

3. \(\text{m} \) \(A = 85.4 \text{ sq m} \)

4. \(\text{ft} \) \(A = 3 \text{ sq ft} \)

5. \(\text{cm} \) \(A = 5.68 \text{ sq cm} \)

6. \(\text{yd} \) \(A = 8 \text{ sq yd} \)

Solve.

7. Gerard ran out of tile for his patio. The width of the remaining area is \(\frac{22}{9} \) feet. The length of the remaining area is 7 feet. How much does Gerard have left to tile?

8. Kyra is building a dollhouse. The carpet for the bedroom is 27 square inches. The length of the bedroom is 6 inches. How long is the width?
The graph shown represents a skier traveling at a constant speed.

1. The points on the graph represent four ordered \((x, y)\) pairs. Write the ordered pairs.
 \((_, _\) \((_, _\) \((_, _\) \((_, _\)

2. Complete the table to show the relationship that time and distance share.

<table>
<thead>
<tr>
<th>Time (hours)</th>
<th>0</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Distance (miles)</td>
<td>0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

3. At what constant rate of speed was the skier traveling? Explain how you know.

4. Dayna surveyed her classmates to find out how many e-mails they send per day. Then, she drew this line plot with the data. Use the line plot to answer questions about the e-mails sent.

 a. How many classmates were surveyed?

 b. How many classmates sent fewer than 5 e-mails?

 c. How many classmates sent at least 7 e-mails?

5. Stretch Your Thinking Find the fractional side lengths of a rectangle that has a perimeter of \(64\frac{5}{6}\) inches. Then find the area of the rectangle.
1. Alison had a box in the shape of a cube. She decided to use centimeter cubes to find the volume of the box. It took 75 centimeter cubes to fill the box with no gaps. What was the volume of the box?

Find the number of unit cubes and the volume.

2. Number of unit cubes:
 Volume:

3. Number of unit cubes:
 Volume:

4. Number of unit cubes:
 Volume:

5. Number of unit cubes:
 Volume:

6. Number of unit cubes:
 Volume:

7. Number of unit cubes:
 Volume:
Write the computation in words.

1. $4.5 \div 0.5 + 0.1$
2. $6 \div \frac{1}{6}$
3. $4 \cdot (5 - 2)$
4. $11 - c$

Find the perimeter and the area of the rectangle.

5. \[P = \quad \text{and} \quad A = \]
6. \[P = \quad \text{and} \quad A = \]

7. **Stretch Your Thinking** Draw a sketch to show two figures that have the same number of unit cubes that look different from each other.
Use the prism on the right to answer the questions.

1. How many cubes are in 1 layer? _______________
2. How many layers are in the prism? _______________
3. Write a multiplication expression for the volume. _______________

4. What is the volume of the prism? _______________

Find the volume.

5. Volume: _______________
6. Volume: _______________
7. Volume: _______________
8. Volume: _______________
9. Volume: _______________
10. Volume: _______________
Solve. Follow the Order of Operations.

1. \(21 - 6 + 3 - 6\)
2. \((7.9 - 5.1) \cdot (0.2 + 0.8)\)
3. \(6 \cdot 10 \div 5\)
4. \(\frac{1}{5} \cdot \frac{1}{5} \div \frac{1}{5}\)
5. \((2\frac{3}{8} - \frac{1}{4}) \times \frac{1}{8}\)
6. \(\frac{5}{8} - 3 \cdot \frac{1}{16}\)
7. \(16 \div 0.2 + 15 \div 0.03\)
8. \(64 \div (6.6 + 1.4) \cdot 2\)
9. \(0.7 - 0.9 \div 3 + 0.6\)

Find the number of unit cubes and the volume.

10.
11.

Number of unit cubes:
Number of unit cubes:

Volume:
Volume:

12. **Stretch Your Thinking** I’m a figure with six layers. Each of my layers is the same. My bottom layer has a perimeter of 28 units, and my volume is between 200 and 300 cubic units. What is my volume?
Write a numerical expression for the volume. Then calculate the volume.

1. \[8 \text{ cm} \times 8 \text{ cm} \times 8 \text{ cm} = ? \text{ cm}^3\]
 Expression: \[V = l \times w \times h\]
 Volume: \[V = 512 \text{ cm}^3\]

2. \[6 \text{ ft} \times 12 \text{ ft} \times 6 \text{ ft} = ? \text{ ft}^3\]
 Expression: \[V = l \times w \times h\]
 Volume: \[V = 432 \text{ ft}^3\]

3. \[3 \text{ m} \times 5 \text{ m} \times 4 \text{ m} = ? \text{ m}^3\]
 Expression: \[V = l \times w \times h\]
 Volume: \[V = 60 \text{ m}^3\]

Find the unknown dimension or volume of each rectangular prism.

4. \(V = 4 \text{ cm} \times 4 \text{ cm} \times h = 16 \text{ cm}^3\)
 \(l = 4 \text{ cm}\)
 \(w = 4 \text{ cm}\)
 \(h = 11 \text{ cm}\)

5. \(V = 168 \text{ cu yd}\)
 \(l = ? \text{ yd}\)
 \(w = 7 \text{ yd}\)
 \(h = 3 \text{ yd}\)

6. \(V = 90 \text{ cu in.}\)
 \(l = 9 \text{ in.}\)
 \(w = ? \text{ in.}\)
 \(h = 5 \text{ in.}\)

Write an equation. Then solve.

7. Pattie built a rectangular prism with cubes. The base of her prism has 12 centimeter cubes. If her prism was built with 108 centimeter cubes, how many layers does her prism have?
 \[12 \text{ cm}^3 \times n = 108 \text{ cm}^3\]
 \[n = 9\]

8. Isabella cares for an aquarium that is 6 feet long and has a height of 4 feet. The aquarium needs 72 cubic feet of water to be completely filled. What is the width of the aquarium?
 \[l = 6 \text{ ft}\]
 \(w = ? \text{ ft}\)
 \(h = 4 \text{ ft}\)
 \[V = l \times w \times h\]
 \[72 \text{ ft}^3 = 6 \text{ ft} \times w \times 4 \text{ ft}\]
 \[w = 3 \text{ ft}\]

9. Ray’s aquarium is 20 inches long, 20 inches wide, and has a height of 15 inches. Randal’s aquarium is 40 inches long, 12 inches wide, and has a height of 12 inches. Whose aquarium has a greater volume? By how much?
 \[V_{Ray} = 20 \text{ in.} \times 20 \text{ in.} \times 15 \text{ in.}\]
 \[V_{Randal} = 40 \text{ in.} \times 12 \text{ in.} \times 12 \text{ in.}\]
 \[V_{Ray} = 6000 \text{ in.}^3\]
 \[V_{Randal} = 5760 \text{ in.}^3\]
 \[V_{Ray} > V_{Randal}\]
 \[6000 \text{ in.}^3 - 5760 \text{ in.}^3 = 240 \text{ in.}^3\]
Add or subtract.

1. $0.45 + 0.77 = ______
2. $0.4 + 0.08 = ______
3. $6.9 - 3.44 = ______
4. $7 - 2.2 = ______
5. $0.66 + 0.96 = ______
6. $5.7 - 0.9 = ______$

Find the volume.

7. Volume: _________
8. Volume: _________

9. **Stretch Your Thinking** Give the dimensions of a crate that could be used to ship 6 of the boxes below. Allow for some air space between the boxes so they can fit in the crate.

© Houghton Mifflin Harcourt Publishing Company
For each question, write whether you would measure for length, area, or volume.

1. the amount of space inside a moving van _____________
2. the number of tiles needed to cover a bathroom floor _____________
3. the distance from a porch to a tree _____________
4. the amount of water a tank holds _____________
5. the height of a flagpole _____________

Solve.

6. A box is 5 inches long, 4 inches wide, and 1 inch deep. How much space is inside the box?

7. Aponi built a toy chest for her niece. It has a volume of 12 cubic feet. The chest is 3 feet long and 2 feet wide. How deep is it?

8. The rug in Alan’s room has an area of 18 square feet. He is planning to buy another rug that is twice as long and twice as wide. What is the area of the new rug?

9. Each drawer in Monique’s nightstand has a volume of 6 cubic decimeters. Each drawer in her dresser is twice as long, twice as wide, and twice as deep. What is the volume of one of Monique’s dresser drawers?

10. Fong and Daphne built these structures. Who used more cubes? How many more?

Solve.

1. 3.8×5.4
2. 0.30×6.7
3. 3.3×0.78
4. 0.04×7.3
5. 0.6×5.14
6. 8.3×2.8

Find the unknown dimension or volume of each rectangular prism.

7. $V = \quad l = 7 \text{ cm} \quad w = 4 \text{ cm} \quad h = 9 \text{ cm}$
8. $V = 200 \text{ cu yd}$
9. $V = 160 \text{ cu in.}$

 $l = _ \quad w = 5 \text{ yd} \quad h = 5 \text{ yd}$

10. $V = \quad l = 10 \text{ cm} \quad w = 8 \text{ cm} \quad h = 6 \text{ cm}$

 $l = _ \quad w = 9 \text{ m} \quad h = 3 \text{ m}$

11. $V = 297 \text{ cu m}$
12. $V = 126 \text{ cu in.}$

 $l = 9 \text{ in.}$

13. Stretch Your Thinking Give one real world example for measuring each of the following: perimeter, area, volume.

 __

 __

 __
Find the volume of each composite solid figure.

1.

2.

3.

4. The exterior of a refrigerator is shaped like a rectangular prism, and measures $2\frac{2}{3}$ feet wide by $5\frac{1}{2}$ feet high by $2\frac{1}{2}$ feet deep. What amount of space does the refrigerator take up?

5. In the space below, draw a composite solid of your own design that is made up of two prisms. Write the dimensions of your design, and then calculate its volume.
Divide

1. $0.7 \div 49$
2. $0.05 \div 50$
3. $0.8 \div 0.64$
4. $0.06 \div 36$
5. $0.3 \div 939.6$
6. $0.06 \div 27.3$

Solve.

7. A fish tank is 20 feet long, 12 feet wide, and 10 feet deep. What is the volume of the fish tank?

8. Stretch Your Thinking Draw a composite solid in the space below using two different rectangular prisms. Label the length and width using fractions of units. The figures do not need to be to scale. Find the volume of the figure.
Circle all the names that describe the shape.

1. quadrilateral trapezoid parallelogram rhombus rectangle square
2. quadrilateral trapezoid parallelogram rhombus rectangle square
3. quadrilateral trapezoid parallelogram rhombus rectangle square
4. quadrilateral trapezoid parallelogram rhombus rectangle square

Sketch a shape that fits the description, if possible.

5. a trapezoid with two right angles
6. a rhombus with a line of symmetry
7. a parallelogram with a right angle that is not a rectangle
8. a rectangle with opposite sides that are not congruent
Add or subtract.

1. \(\frac{5}{6} - \frac{1}{3} \)
2. \(\frac{3}{4} - \frac{5}{8} \)
3. \(\frac{3}{16} - \frac{1}{8} \)
4. \(\frac{5}{9} + \frac{1}{3} \)
5. \(\frac{3}{5} + \frac{1}{4} \)
6. \(\frac{1}{6} + \frac{2}{3} \)
7. \(6 - \frac{3}{2} \)
8. \(1\frac{4}{9} + 4\frac{2}{3} \)
9. \(6\frac{4}{5} - 2\frac{1}{10} \)

Find the volume of each composite solid.

10.

11.

12.

13. **Stretch Your Thinking** Explain why a square is always a rectangle but a rectangle is not always a square.
Circle all the names that describe the shape.

1. acute scalene
 right isosceles
 obtuse equilateral

2. acute scalene
 right isosceles
 obtuse equilateral

3. acute scalene
 right isosceles
 obtuse equilateral

4. acute scalene
 right isosceles
 obtuse equilateral

Sketch a shape that fits the description, if possible.

5. a triangle with two obtuse angles

6. a right scalene triangle

7. an acute triangle that is not equilateral

8. a scalene triangle with a line of symmetry
8-15 Name ______________________ Date ______________________

Remembering

Solve.

1. \(\frac{1}{5} \div 6 = \) _____
2. \(7 \div \frac{1}{4} = \) _____
3. \(\frac{6}{7} \cdot \frac{1}{5} = \) _____

4. \(\frac{1}{10} \div 5 = \) _____
5. \(4 \cdot \frac{1}{5} = \) _____
6. \(\frac{1}{3} \cdot 14 = \) _____

Find each product by first rewriting each mixed number as a fraction.

7. \(\frac{3}{5} \cdot 1\frac{1}{6} = \) _____________
8. \(2\frac{2}{3} \cdot 6 = \) _____________

9. \(4\frac{5}{6} \cdot 2\frac{1}{5} = \) _____________
10. \(4\frac{1}{4} \cdot \frac{3}{8} = \) _____________

Circle all the names that describe the shape.

11.

- quadrilateral
- trapezoid
- parallelogram
- rhombus
- rectangle
- square

12.

- quadrilateral
- trapezoid
- parallelogram
- rhombus
- rectangle
- square

13. **Stretch Your Thinking** The sum of the lengths of any two sides of a triangle must be greater than the length of the third side. List three side lengths that will form a triangle. Use a ruler and draw the triangle.

__

Draw a shape that fits the description. Mark all congruent segments and right angles.

1. an open shape made up of one or more curves
2. a concave quadrilateral with an acute angle and exactly two congruent sides

3. a closed shape that is not a polygon made entirely of segments
4. a convex pentagon with two parallel sides and two perpendicular sides

5. a concave hexagon with two pairs of congruent sides
6. a quadrilateral with four congruent sides that is not regular
Remembering

Simplify. Follow the Order of Operations.

1. \(61 - 300 \div 6\)
2. \(0.8 \div (0.09 - 0.07)\)
3. \(4 \cdot 9 - 12 \div 3\)

4. \(\left(\frac{5}{12} + \frac{3}{4}\right) \cdot 12\)
5. \(44 + 29 - 13 + 34\)
6. \(100 \div (6 - 2) \cdot 5\)

Circle all the names that describe the shape.

7. [Diagram of an acute scalene triangle]
 [Diagram of a right isosceles triangle]
 acute scalene
 right isosceles
 obtuse equilateral

8. [Diagram of an acute scalene triangle]
 [Diagram of a right isosceles triangle]
 acute scalene
 right isosceles
 obtuse equilateral

9. Stretch Your Thinking Write a description of a two-dimensional shape and then draw the shape.

Solve.

1. On the grid below, draw and label an aquarium shaped like a rectangular prism with a volume of 8,000 cubic inches. (Hint: A cube is a rectangular prism, and $2 \times 2 \times 2 = 8$.)

2. Calculate the perimeter of the top of your aquarium. Then calculate the area of its base.

 $P =$ _____________________________

 $A =$ _____________________________

3. The rectangular prism you drew for Problem 1 is not the only rectangular prism that has a volume of 8,000 cubic inches. Other prisms are possible. On the grid below, use a new color and draw a different rectangular prism that has a volume of 8,000 cubic inches.
Complete the pattern.

1. \(22 \times 10^1 = 22 \times 10 = \underline{220}\)
 \(22 \times 10^2 = 22 \times 100 = \underline{2200}\)
 \(22 \times 10^3 = 22 \times 1,000 = \underline{22,000}\)
 \(22 \times 10^4 = 22 \times 10,000 = \underline{220,000}\)

2. \(412 \times 10^1 = \underline{4120}\)
 \(412 \times 10^2 = 412 \times 100 = \underline{41,200}\)
 \(412 \times 10^3 = \underline{412,000}\)
 \(412 \times 10^4 = 412 \times 10,000 = \underline{4,120,000}\)

3. \(56 \times 10^1 = \underline{560}\)
 \(56 \times 10^2 = \underline{5,600}\)
 \(56 \times 10^3 = \underline{56,000}\)
 \(56 \times 10^4 = \underline{560,000}\)

4. \(8 \times 10^1 = 8 \times 10 = \underline{80}\)
 \(8 \times 10^2 = 8 \times 100 = \underline{800}\)
 \(8 \times 10^3 = 8 \times 1,000 = \underline{8,000}\)
 \(8 \times 10^4 = 8 \times 10,000 = \underline{80,000}\)

Draw a shape that fits the description. Mark all congruent segments and right angles.

5. a triangle with a right angle and exactly two congruent sides
6. a concave octagon with all sides congruent

7. Stretch Your Thinking List the dimensions of two different rectangular prisms in which each has a volume of 6,600 cubic centimeters.