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Abstract: 

 

Chern numbers are gaining traction as they characterize topological phases in various physical 

systems. However, the resilience of the system topology to external perturbations makes it 

challenging to experimentally investigate transitions between different phases. In this study, we 

demonstrate the transitions of Chern number from 0 to 3, synthesized in an electronic-nuclear spin 

system associated with the nitrogen-vacancy (NV) centre in diamond. The Chern number is 

characterized by the number of degeneracies enclosed in a control Hamiltonian parameter sphere. 

The topological transitions between different phases are depicted by varying the radius and offset 

of the sphere. We show that the measured topological phase diagram is not only consistent with 



the numerical calculations but can also be mapped onto an interacting three-qubit system. The NV 

system may also allow access to even higher Chern numbers, which can be applied to exploring 

exotic topology or topological quantum information. 

 

 

Main text: 

 

Introduction 

 

Currently, extensive research is being conducted on the Chern number1, which is defined 

as the integral of the Berry curvature2–6, and on the application of its robust topological properties 

to quantum metrology7, next-generation electronics8, spintronics 9, and quantum computation10–13. 

Particularly, exploration of the Chern number to its higher values and investigating the transitions 

between them are of significant interest14–16. For example, high Chern number phases in the 

quantum anomalous Hall insulators are a candidate platform for next-generation low-power-

consumption electronics because the contact resistance between the normal metal electrodes and 

chiral edge channels drops as the Chern number increases17–19. To characterize this scaling 

experimentally, it is necessary to vary the Chern number without changing the material properties. 

 

Despite an advanced theoretical foundation, Chern numbers greater than one have been 

scarcely observed experimentally in condensed matter systems until recently, such as multilayer-

graphene boron-nitride interfaces with field-tuneable superlattice flat bands14,20 and undoped 

multilayers of topological insulator under alternating magnetic fields8,21. Moreover, although the 

controllability of the Chern number will add tremendous value to the abovementioned practical 

applications, it is even more challenging to transit across the topological phases. Two major 

challenges hinder their experimental investigation, namely, continuous tuning of the properties in 

materials and the direct detection of the topological invariant of the multi-fold degenerate points 

in condensed matter systems.  

 

An alternative approach to simulating Chern numbers involves the use of two-level systems 

in various qubit platforms22–26, including superconducting qubits27,28, ultracold atoms29–32, and 



nitrogen vacancy (NV) centres in diamond33. These platforms with large experimental degrees of 

freedom can be employed as powerful quantum simulators for simulating complex and dynamic 

Hamiltonian models in condensed matter systems, which are usually difficult to access or even 

inaccessible. Notably, researchers have used a single NV centre to explore 2D synthetic quantum 

Hall physics34 and a synthetic monopole source in the Kalb-Ramond field 35. 

 

According to Gritsev et al.36, the Chern number can be measured as an integral of the 

deviation in the qubit Bloch vector from the hemispherical trajectory of a time-varying Larmor 

vector owing to a nonadiabatic response (Fig. 1a).  Here, we assume that the qubit system can be 

described by the generic Hamiltonian  𝐻"(𝑡) = 𝐻"! + 𝐻""(𝑡) , where 𝐻"!  is the static internal 

Hamiltonian that defines the degeneracy points, and 𝐻""(𝑡)  is the time-dependent control 

Hamiltonian. The control Hamiltonian adopts the form  𝐻""(𝑡) = ℏ𝐻))⃗ (𝑡) ⋅ �⃗�/2, where  ℏ is the 

reduced Planck’s constant, 𝐻))⃗ (𝑡)  is the time-varying Larmor vector in a three-dimensional 

Hamiltonian parameter space labelled as (𝐻# , 𝐻$ , 𝐻%), and �⃗� = (𝜎# , 𝜎$ , 𝜎%) are the Pauli matrices. 

The Larmor vector is chosen to sweep a hemispherical trajectory from the north pole to the south 

pole with a radius 𝐻& and introduce an offset 𝐻' along the z-axis from the origin:  

 

𝐻))⃗ (𝑡) = (𝐻& sin 𝜃(𝑡) cos𝜙(𝑡) , 𝐻& sin 𝜃(𝑡) sin𝜙(𝑡) , 𝐻& cos 𝜃(𝑡) + 𝐻'), (1) 
 

where 𝜃 is the time-varying polar angle and 𝜙 is the azimuthal angle fixed at 0, without the loss 

of generality. When the Larmor vector traverses this trajectory at a finite speed, the qubit’s Bloch 

vector ⟨�⃗�⟩ follows the Larmor vector 𝐻))⃗ (𝑡), but with a small deviation along the 𝜙 direction at each  

polar angle location owing to a nonadiabatic response 2–4,37. For the first-order approximation, this 

deviation is related to the 𝜙 component of the Berry curvature 𝐹( through the following linear 

relation: 

 

𝐹((𝜃) =
𝐻& sin 𝜃 ⟨σ)⟩

2𝑣*
, (2) 

 



where ⟨𝜎$⟩ is the expectation value of the y component of the Bloch vector and 𝑣* ≡ 𝑑𝜃/𝑑𝑡 

denotes the angular speed about its polar axis. An integration of this Berry curvature over the polar 

angle of the trajectory yields the Chern number as follows: 

 

𝐶 = @ 𝐹((𝜃)𝑑𝜃
+

'
(3) 

 

The Chern number depends on the number of degeneracy points of the static internal Hamiltonian 

enclosed in a control Hamiltonian sphere drawn by the Larmor vector. Every degeneracy point can 

be regarded as a synthetic magnetic monopole. These monopoles produce radial synthetic 

magnetic fields that exert a torque on the Bloch vector.  

 

In this work, we apply this protocol to experimentally observe the transition of the Chern 

number from 0 to 3 using three degeneracy points associated with the ground-state energy level of 

a single NV centre in diamond (Fig. 1b). The NV electronic spin ground-state has three sublevels 

|−1⟩, |0⟩, and |+1⟩, out of which only |−1⟩ and |0⟩ are used as a two-level system, represented 

by �⃗� in the following measurements. The host nuclear spin 14N, with a spin quantum number of 

𝐼 = 1, induces hyperfine coupling. The internal Hamiltonian takes the form  𝐻"' =
,
-
ℏ𝐴∥𝜎%𝐼% , 

where 𝐴∥/2𝜋 = 2.2 MHz is the coupling strength of the longitudinal component of the hyperfine 

interaction and 𝐼% denotes the z component of the nuclear spin. This electronic-nuclear spin system 

contains three degeneracy points, allowing us to access the topological phases with a Chern 

number greater than 1. The time-dependent Larmor vector in Eq. (1) is realized through spin-

control microwaves that exhibit a time-varying Rabi frequency Ω(𝑡) = Ω, sin 𝜃(𝑡) and detuning 

of Δ(t) = Δ, cos 𝜃(𝑡) + Δ- , both measured in units of Hz. Without loss of generality, the 

azimuthal angle was set to 𝜙 = 0. Under this experimental configuration, the Larmor vector can 

be written as: 

 

𝐻))⃗ (𝑡) = (Ω, sin 𝜃(𝑡) , 0, Δ, cos 𝜃(𝑡) + Δ-) (4) 
 

Fig. 1c illustrates the experimental sequence for measuring the Berry curvature at a certain polar 

angle. The hemispherical trajectory starts from the north pole 𝜃 = 0 at 𝑡	 = 0 and ramps along the 



𝐻$ = 0 meridian with a constant angular velocity until it reaches the south pole 𝜃 = 𝜋 at 𝑡	 =

	𝑇&/01, that is, 𝜃(𝑡) = 𝜋𝑡O𝑇&/01P
2,. Throughout this study, the direction of the trajectory was 

fixed along the north-to-south direction with respect to the points of ground-state degeneracy. A 

snapshot of ⟨𝜎$⟩ at various polar angle locations was measured by terminating the sweep at time 

𝑡 = 𝑇03/4.  

 

As a measure of the degree of adiabaticity, an adiabaticity parameter27 was introduced as 

follows: 

𝛼 ≡
Ω,𝑇&/01
2𝜋

(5) 

 

This measure represents the fractional change in the Larmor vector. Recalling the extra second-

order term 𝑂(𝑣-)  in the Berry curvature formula (Supplementary Eqn. (2.1)), 𝛼  affects the 

accuracy of the measured Chern number. In the nonadiabatic limit (𝛼 ≪ 1 ), the first-order 

approximation of the Berry curvature in Eq. (2) breaks down. Subsequently, the effects of higher-

order terms contaminate the signal in our measurements. Conversely, in the adiabatic limit (𝛼 ≫

1), the NV spin remains in the instantaneous ground state; the spin vector is approximately parallel 

to the direction of the control field, following the meridian. However, the deviation signal ⟨𝜎$⟩ 

becomes smaller and eventually lies buried in the noise. For the three-level NV system, the 

appropriate range reflecting an optimum signal-to-noise ratio was found to be 2 ≤ 𝛼 ≤ 10 (see 

Supplementary Information). The adiabaticity parameter was set to 𝛼 = 2 for the remainder of the 

work. 

 

 

Results 

 

As a benchmark experiment, we first characterized a case with the expected Chern number 

of 𝐶 = 0 (Fig. 2a). This case was realized by choosing a small sphere with a normalized radius of 

𝐻&/𝐴∥ = 0.2 and a normalized detuning of 𝐻'/𝐴∥ = 0.23	, which does not contain any of the three 

degeneracy points. Although these degeneracy points were expected to make the Berry-curvature 

zero for any 𝜃 , numerical simulations based on a time-dependent Schrödinger equation (see 



Methods) predicted a deviation from zero. This deviation can be attributed to the nonadiabatic 

effect, which limits the accuracy of this quasi-static Chern number measurement approach. The 

measured Berry curvature was consistent with the simulation results, including the nonadiabatic 

effect. The resulting Chern number, obtained by integrating the Berry curvature over theta, 

converged to 𝐶	 = 	−0.07	 ± 	0.04. Measurement error is evaluated from the photon-shot noise 

(1𝜎). 

 

To observe higher Chern numbers, we then examined cases with one, two, and three 

enclosed degeneracy points by increasing the radius up to  𝐻&/𝐴∥ = 2.25  (Fig. 2b-d). The 

numerical simulations predicted a larger deviation in the path of the Bloch vector with an increase 

in the number of enclosed degeneracy points, indicating a more aggressive behaviour of the Berry 

curvature. The measured Berry curvatures for each case agree well with the numerically simulated 

values. The Chern numbers were measured to be 𝐶	 = 	0.95	 ± 	0.35, 2.20	 ± 	0.39, and 2.93	 ±

	0.38. Thus, our results prove that the NV electronic-nuclear spin system can be used as a platform 

for synthesizing up to three Chern numbers. 

 

Our proposed NV system can further explore the transition between the observed Chern 

numbers. Fig. 3a presents the topological phase transition along the normalized radius axis 

(𝐻&/𝐴∥ ∈ {0.25, 2.25}) for various normalized offset conditions: 𝐻'/𝐴∥ = 2.0, 1.0, 0.23, 0.0. In 

all the cases, we observed a mild phase transition. This dullness can be attributed to the finite 𝑇-
∗ 

time and the limited adiabaticity parameter 𝛼 . Additionally, the consistency between the 

experimentally measured and numerically simulated Chern numbers reflects this nonadiabatic 

effect within one standard deviation of the measurement error, except for 𝐻&/𝐴∥ ≤ 1.	The 

disagreement within this small-radius region is possibly due to the imperfect calibration of the low 

Rabi frequencies (see Methods). One notable effect was found in the case of 𝐻'/𝐴∥ = 0.0, where 

the number of enclosed degeneracy points was expected to jump from one to three at 𝐻'/𝐴∥ = 1. 

However, in the measurements, a sudden depletion of 𝐶 was observed near 1, and the transition 

occurred above 1. This shift in the transition point can be attributed to the nonadiabatic response 

of a qubit when the Larmor vector coincides with the position of the degeneracy points on the z-

axis. Fig. 3b presents the transition curves across the normalized offset (𝐻'/𝐴∥ ∈ {0.00, 2.25}) for 



various values of the normalized radius of 𝐻&/𝐴∥ = 0.23, 0.79, 1.36, 2.17 , advocating the 

diversity of the phase transition pattern. A systematic view of the measurement results could be 

obtained by mapping the Chern number phase diagram in a two-dimensional parameter space of 

𝐻'/𝐴∥	 and 𝐻&/𝐴∥	 (Fig. 3c). It can be observed that the Chern number distribution is not mirror-

reflected with respect to the  𝐻'/𝐴∥ = 0 line. This asymmetry occurs due to the time-reversal 

symmetry breaking of the system35 when 𝐶 ≠ 0, which is caused by the sweeping of the Larmor 

vector from positive to negative detuning during the measurement, creating a directional 

dependence of the Lorentzian force-like response of the qubit; thereby, breaking the Chern number 

transition symmetry (see Supplementary Information). 

 

 

Discussion 

 

We discuss the connection between the NV system and an interacting three-qubit system 

to reveal the implications of our two-dimensional topological phase diagram. The topological 

phase diagram presented in this study was constructed by varying the radius and offset of the 

sphere with respect to the three degeneracy points. As shown in Fig. 4a, varying the radius under 

fixed inter-degeneracy spacings is topologically similar to varying the inter-degeneracy spacing 

under a fixed radius. The former was implemented in this work using the NV centre, which is 

regarded as a single qubit Ising interacting with an additional spin with a high quantum spin 

number. The latter can be realized by varying the coupling strength 𝑔 in an interacting symmetric 

1D chain multiqubit system using the following Hamiltonian: 

 

𝐻!3𝑞 = −
ℏ
2 "𝐻

###⃗ 1 ⋅ 𝜎##⃗ 1 +𝐻###⃗ 2 ⋅ 𝜎##⃗ 𝟐 +𝐻###⃗ 3 ⋅ 𝜎##⃗ 𝟑 +𝐻0′ 𝜎1𝑧 +
1
2𝐻0

′ 𝜎2𝑧

−𝑔%𝜎1𝑥𝜎2𝑥 + 𝜎1
𝑦𝜎2

𝑦&−𝑔%𝜎2𝑥𝜎3𝑥 + 𝜎2
𝑦𝜎3

𝑦&' (6)
 

 

The topological phases measured in these systems can be mathematically connected via projection 

functions:	 

 



𝑔aAO𝐻b& , 𝐻b'P =
1
2𝐻b&

	c1 − O1 − d1 − 2𝐻b'dP
-, 𝐻b'AO𝐻b& , 𝐻b'P =

1
𝐻b&
O1 − d1 − 2𝐻b'dP (7) 

 

where 𝑔aA = 𝑔/𝐻& , 𝐻b'A = 𝐻'/𝐻& and 𝐻b& = 𝐻&/𝐴∥, 𝐻b' = 𝐻'/𝐴∥. 

 

 In Fig. 4b, first, we numerically calculated the topological phase diagram of the interacting 

three-qubit system. For a large 𝐻b&, where the Rabi frequency becomes significantly larger than 𝐴||, 

the normalized coupling strength 𝑔aA approaches 0, where the three qubits distinctively contribute 

to the total Chern number to be 𝐶 = 3. Owing to the inverse relation, when 𝐻b& approaches 0, both 

𝑔aA and 𝐻b'A  become large, where 𝐶 = 0 in the phase diagram. The Chern number trait for these 

limiting cases remains similar to that of the coupled two-qubit Hamiltonian25. Meanwhile, a more 

complex phase structure can be found by analytically calculating the positions of the ground state 

degeneracy points with respect to the sweep parameter sphere manifold. The white dashed 

boundaries clarify four distinctive regions where the Chern number in each region corresponds to 

the number of monopoles enclosed by the surface. Along the 𝐻b'A  axis, one monopole exits the 

surface at 𝐻b'A = 1 (𝐶 = 3 to 𝐶 = 2) and second at 𝐻b'A = 2 (𝐶 = 2 to 𝐶 = 1). Next, along the 𝑔aA 

axis, the two monopoles escape the surface at 𝑔aA = 1/√2, inducing the Chern number transition 

from 𝐶 = 3 to 𝐶 = 1.  

 

Finally, we project the three-monopole topological phase measurements onto the 

interacting three-qubit system using Eq. (7) and then compared with the three-qubit Chern number 

simulation results (Fig. 4c). For a fixed 𝐻b', 𝐻b&  is swept from 0.22 to 2.2 by varying the Rabi 

frequency on the NV spin. The orthogonal parameter axes, 𝐻b' and 𝐻b&, are nonlinearly transformed 

into 𝐻b'A  and 𝑔aA which gives topological phase transition curves in radial cross-sections for 𝐻b' = 0, 

0.23, 0.45, 0.68, and 0.91. The three-monopole Chern number transition projection, evaluated 

using Eq. (7), and the simulated Chern number transition cross section of the interacting three-

qubit system are consistent with each other (blue dotted line in Fig. 4b). 

 

  The coupled multiqubit Hamiltonian carries multiple degenerate ground states, which 

leads to the realization of a high Chern number. Here, the interaction strength, g, between qubits 



determines the position of the monopoles on the parameter space z-axis (see Supplementary 

Information). In principle, investigating the topology of an N-interacting qubit system could 

simulate the topology of non-interacting 2N band models; for example, two interacting qubit 

systems simulating the topology of the ground band of this four-band electronic model and an 

interacting three-qubit system could help to probe the topological structure of the half-filled eight-

band model25. 

 

Our scheme clearly shows that a high Chern number can be deterministically simulated 

using a single-qubit-based multi-monopole system, in addition to tuning the level of its transition 

depending on the range of 𝐻'/𝐴∥ and 𝐻&/𝐴∥ variations. For example, an electron-nuclear spin 

coupled system in diamond can be a versatile tool for studying a high-dimensional topology 

because further scaling up to a higher topological invariant number can be straightforwardly 

performed by utilizing the intrinsic 13C nuclear spins near the NV spin qubit with hyperfine 

coupling strengths varying from a few tens of kHz to almost ~100 MHz36. For a higher-number 

symmetric monopole system, one can engineer the Chern number transition with an increment of 

1 or an even number transition: 𝐶 = 0,2,4⋯ or an odd number transition 𝐶 = 1,3,5⋯ by tuning 

the detuning 𝐻'/𝐴∥.  

 

 

Conclusion 

 

In conclusion, we simulated a high topological invariant number using a simple system of 

NV electronic spin qubit hyperfine coupled with 14N nuclear spin and demonstrated the robust 

tunability of the measured topological invariant number up to 𝐶 = 3 by harnessing the control 

parameters of the qubit. A systematic design of the Hamiltonian parameter sphere reveals the 

detailed topological structures over the three synthetic monopoles as well as the intriguing Chern 

number physics associated with the adiabaticity of the system’s evolution over time. The generality 

of this method can be expanded to various qubit platforms to investigate the topology of higher 

dimensions, such as N-interacting qubit systems, which can simulate the topology of non-

interacting 2N band models in condensed-matter physics. Furthermore, the tunability of the 



topological invariant of a qubit system can be directly applied to explore more exotic topology, 

which could be applied to the field of topological quantum information science.  

Methods: 

 

NV spin system with three degeneracies 

The NV centre ground-state has an electronic spin with a spin quantum number of 𝑆 = 1 

with sublevels |0⟩ and |±1⟩. However, throughout this work, we only used |0⟩ and |−1⟩ as a two-

level system by Zeeman splinting the |±1⟩ states using a static external field. This electronic spin 

experiences a hyperfine interaction with the host nuclear spin 14N with a spin quantum number of 

𝐼 = 1. The longitudinal component of the hyperfine interaction with a coupling strength of 𝐴∥ =

	2.2 MHz further splits the degeneracy of |−1⟩ into three levels. The internal Hamiltonian assumes 

the form  𝐻"' = 𝐴∥𝜎%𝐼% . Consequently, this electronic-nuclear spin system contains three 

degeneracy points, allowing us to simulate topological phases with a Chern number greater than 

1. Additionally, the transition between different Chern numbers can be realized by introducing a 

common offset to these degeneracy points. The topology realized in this study corresponds to an 

eight-band noninteracting triangular lattice model. 

 

Experimental setup 

Measurements were performed using a home-built NV-diamond confocal microscope. An 

acousto-optic modulator (Isomet Corporation) enabled time gating of a 400 mW, 532 nm diode-

pumped solid-state laser (Changchun New Industries). The laser beam was coupled to a single-

mode fibre, and subsequently, delivered to an oil-immersion objective (100x, 1.3 NA, Nikon CFI 

Plan Fluor), and focused onto a diamond sample. The diamond sample was fixed on a three-axis 

motorized stage (Micos GmbH) for precise position control. NV red fluorescence (FL) was 

collected using the same objective and then passed through a dichroic filter (Semrock LP02-

633RS-25). A pinhole (diameter 75 μm) was used with a f = 150 mm telescope to spatially filter 

the FL signal, which was detected using a silicon avalanche photodetector (Perkin Elmer SPCM-

ARQH-12). A signal generator (SG, Agilent E4428C) was used to provide the carrier microwave 

signal. The phase and amplitude of the carrier signal was modulated with a 1 G/s rate arbitrary 

waveform generator (AWG, Tektronix AWG 5014C) and an IQ mixer (Marki IQ 1545 LMP). The 

microwave sideband signal was amplified (Mini-circuits ZHL-16W-43-S+) and passed through a 



gold coplanar waveguide, fabricated on a quartz coverslip using photolithography, and was 

mounted directly on the diamond sample to control the NV spin qubit. The diamond sample was 

CVD-grown, 12C isotopically purified to 99.99 %, and had dimensions of 2 mm × 2 mm × 0.5 mm. 

After the implantation of 14N+ ion, the diamond was annealed at 800 ◦C for 8 h and at 1000 ◦C for 

10 h. During the measurement, the external magnetic field was aligned with the NV crystalline 

axis with a field strength of ~100 G. The NV spin resonance lifetimes were 𝑇, ∼ 3 ms, 𝑇- ∼

400 µs, and 𝑇-∗ ∼ 40 µs. 

 

Quantum state tomography 

The general scheme of the control pulse to create a hemispherical trajectory is a sine 

enveloped chirped signal because of the sweeping of both the detuning and Rabi frequency. To 

match the relative phase of the chirped signal, we connected the tomography pulse directly after 

the control pulse at a given time. 𝑇CDEF. ⟨𝜎$⟩ rotation tomography pulse’s relative phase was set 

with respect to the end phase of the chirped control signal. The tomography pulse Rabi frequency 

was set at 10 MHz. During the tomographic pulse calibration, we observed the dynamic phase 

noise contribution to be highly suppressed. Final NV spin state is readout by observing the amount 

of fluorescence in the 640-800 nm band, caused by an optical illumination of 532 nm. A change 

in fluorescence intensity occurs due to a non-radiative decay pathway via metastable singlet states 

(Fig. 1b). Because the NV spin qubit system has two isolated levels under an external bias magnetic 

field (~100 G), leakage to other states can be neglected, which gives the fidelity advantage of using 

an NV centre for quantum simulations.  

 

Adiabaticity parameter determination 

We determined an optimized condition for adiabaticity parameter 𝛼 , where the qubit 

response is quasi-adiabatic. This condition is fulfilled when the qubit adiabatically follows the 

Larmor vector trajectory yet the observable ⟨𝜎$⟩, which is the Lorentzian deviation from the 

Larmor vector trajectory, has a sufficiently large signal-to-noise ratio to be detected. Using 

dynamic-state preparation as a benchmark of adiabaticity parameter calibration25, we first detected 

the Landau-Zener transition (supplementary information) by measuring ⟨𝜎%⟩ the hemispherical 

manipulation of a spin qubit and confirmed that the transition probability depends on the Rabi 



frequency Ω and 𝑇GECH. The Landau-Zener ⟨𝜎%⟩  measurements, obtained by varying 𝛼, prove that 

our system’s quasi-adiabatic boundary is approximately with the 2 ≤ 𝛼 ≤ 10 range. 

 

Numerical simulations 

All numerical simulations of the NV spin evolution in this work were performed by 

computing the time-ordered time evolution operator at each time step. 

𝑈(𝑡i, 𝑡f) = T! +exp "−𝑖, 𝐻(𝑡)𝑑𝑡
𝑡f

𝑡i
-. =/exp%−𝑖Δ𝑡𝐻(𝑡𝑗)&

𝑁

𝑗=1

(7) 

 

where 𝑡O and 𝑡P denote the initial and final time, respectively;  T" is the time-ordering operator; Δ𝑡 is 

the time step size of the simulation; 𝑁 = (𝑡P − 𝑡O)/Δ𝑡 is the number of time steps; and  𝐻"(𝑡) is the 

time-dependent Hamiltonian. In the simulation, we used a step size of Δ𝑡 = 1 ns, which was 

sufficiently small in the rotating frame. The algorithm was implemented using the MATLAB® 

software. 

 

 

Data availability 

The data supporting the findings of this study are available from the corresponding author upon 

reasonable request. 

 

 

Code availability 

The codes used in this study are available from the corresponding author upon reasonable request. 
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Figures 

 

Figure 1. Schematic of the Chern number measurement approach using an electronic-

nuclear spin system associated with an NV centre in diamond. a, (top) Trajectory of the Larmor 



vector 𝐻))⃗ (𝑡) , represented by a thick blue arrow, in the control Hamiltonian parameter space 

(𝐻# , 𝐻$ , 𝐻%). The solid black arrow indicates the direction of the sweep of the Larmor vector. The 

yellow circles represent the degeneracy points of the system Hamiltonian. (bottom). Time 

evolution of the Bloch vector �⃗�(𝑡) is represented by the red arrow on the Bloch sphere. The Bloch 

vector path deviates from the Larmor vector path due to a nonadiabatic response. The red filled 

area indicates the amount of deviation, a summation of which over the path is related to the Chern 

number. b, NV centre energy level diagram. The NV ground states consist of |0⟩, |±1⟩ electronic 

spin sublevels, which are further split by hyperfine interactions with the host 14N nuclear spin. 

Three hyperfine transitions between |0⟩  and |−1⟩  electronic spin sublevels (yellow double-

arrows) define three degeneracy points in the rotating frame with angular speed of 𝜔Q −

𝐴∥, 𝜔Q , 𝜔Q + 𝐴∥, where 𝐴∥ is the parallel component of the hyperfine tensor. d, Experimental pulse 

sequence. An initialization pulse polarizes the electronic spin into |0⟩. Then, a microwave pulse 

with time-varying Rabi frequency Ω(𝑡) = Ω, sin 𝜃(𝑡)  and time-varying detuning Δ(𝑡) =

Δ, cos 𝜃(𝑡) + Δ- under a constraint of Ω, = Δ, realizes the Larmor vector trajectory. This pulse 

is terminated at 𝑡 = 	𝑇03/4. The Larmor vector trajectory is completed within a time of 𝑇&/01. The 

combination of a microwave tomography pulse and a laser readout pulse allows the measurement 

of all the Bloch vector components. 

 

 



 
Figure 2. Observation of Chern numbers from 0 to 3. The number of degeneracy points 

included in the sphere are incremented one by one by enlarging the normalized radius 𝐻&/𝐴∥ under 

a fixed offset of 𝐻'/𝐴∥ = 0.23. a, Case with no degeneracy point. Expected Chern number is 𝐶 =

0. (Top) Illustration of the Bloch vector trajectory (red line) overlayed with the degeneracy points 

(yellow and grey circles). (Middle) Numerically simulated Berry curvature 𝐹(FOC(𝜃) (red line). 

(Bottom) Measured Berry curvature 𝐹(CDEF(𝜃) (grey circles and red shaded area). Integrating the 

Berry curvature over 𝜃 gives a Chern number of 𝐶 = −0.07 ± 0.04. b-d, Cases with one, two, 

and three degeneracy points, respectively. Expected Chern numbers are 𝐶 = 1,2, 3, while the 

measured Chern numbers are 𝐶 = 0.95 ± 0.35, 2.20 ± 0.39, 2.93 ± 0.38. 

 

 



 
Figure 3. Two-dimensional topological phase diagram and phase transitions along the 

vertical and horizontal directions. a, Measured (grey circles) and simulated (red solid line) 

Chern number values along the normalized radius 𝐻&/𝐴∥ direction under a fixed normalized offset 

of 𝐻'/𝐴∥ = 2.00,1.00, 0.23, 0.00. b, Numerically simulated topological phase map. White dashed 

lines along 𝐻'/𝐻& = ±1 are presented as a guide for eye. Asymmetry in the pattern with respect 

to 𝐻'/𝐴∥ = 0  can be attributed to the time-reversal symmetry breaking of our measurement 

protocol. c, Measured (grey circles) and simulated (red solid line) Chern number values along the 

normalized offset 𝐻'/𝐴∥ for a fixed normalized radius of 𝐻&/𝐴∥ = 0.23, 0.79, 1.36, 2.17. 



 
Figure 4. Tuneable topological invariant with three monopoles.  a, Topological equivalence of 

the Chern number measurement using an electronic-nuclear spin system of the NV centre and three 

interacting qubits. (left) Degeneracy points of the NV electronic-nuclear spin system. The inter-

degeneracy spacing 𝐴∥  is constant, whereas, the radius 𝐻&  and offset 𝐻'  are variable. (right) 

Degeneracy points of the equispaced interacting three-qubit system. The inter-qubit coupling 

strength g and the radius 𝐻&A  are variable, while the offset 𝐻'A 	is fixed. b, Simulated Chern number 

phase diagram for the interacting three-qubit Hamiltonian. White dash lines indicate the transition 

boundaries, and the blue dotted lines denote the radial cross-sections presented in c. Projected 

three-monopole Chern number measurements (blue open circle) and the cross-sectional transition 

of a simulated three-qubit phase diagram (parula). Sweep parameters are normalized for attaining 

a unitless topology (three-monopole system normalized by 𝐴∥ and three-qubit system normalized 

by 𝐻&A ). Each radial projection corresponds to a fixed 𝐻b' = 0, 0.23, 0.45, 0.68 and 0.91. 


