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Overview

Purpose - This work is directed toward reproducing and extending previous work at the Los Alamos
National Laboratory on use of a Penning trap as a small fusion reactor.

Methods - A permanent magnet solenoid was designed and constructed to house a 10 mm. radius
symmetric hyperbolic electrostatic trap with an electron source.

Results - Electron trap%ing was demonstrated by plotting anode current (from scattered electrons) vs.
anode potential and observing a resonance peak at the predicted anode potential. Observation of
{esonance peaks at fusion relevant anode potentials has been hampered by runaway discharge in the
rap.

Conclusions — Electron trapping was observed as predicted by theory, but we have not
yet been able to reach potentials capable of achieving fusion.

Future Work — The solenoid magnetic field strength will be increased to increase the resonant anode
potential to levels required for a potential well capable of yielding nuclear fusion of deuterium ions
attracted to the trapped electron cloud. We will explore new %opro_aches to SUﬁpl’eSSIn? the runaway
discharge including alternative trap designs (e.g. Malmburg-Penning trap). uclear fusion will be
observed by detection of product neutrons using a °He detector.

Present work: Avoid discharge using pulsed operation. Neutrons detected but need to improve electrical
noise rejection.

Future work: Continue investigation of pulsed operation at higher voltages. Improve noise rejection of
3He detector system




The Penning Trap as a Fusion Source

A Penning trap with uniform B, harmonic E can be tuned to make a spherical well for electrons without
the use of grids.

Electrons are maintained IEC beam-like by appropriate boundary conditions.
Spherical convergence produces a central virtual cathode.

lons confined in the central cathode can reach keV energies and produce neutrons.

The Penning Trap

 The Penning trap uses
hyperbolic end cap and ring
electrodes to form a 3D
guadrupole electric field.

 Electrons are “dropped” off
the low radius part of an
end cap cathode (zero
angular momentum —
Brillouin flow).

e Tuning V with B can make
the potential well spherical
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and harmonic.

« Geometry is such that
electrons don't hit the
anode.

 Electrons are recollected at
low energy at the cathode.




Cross Section of Trap Showing
Equipotential Surfaces
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The potentials for the electron source elements were determined by SIMION modeling. The low potential
of the saddle point over which the electrons are injected into the trap results in a very low power requirement
for electron loading of the potential well.




Cold-bore, Spherical Penning Trap (Los Alamos PFX) 2
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The Penning trap used in the Los Alamos PFX experiment.
R, =Z,=3 mm. The trap was inserted in the cold bore of

a superconducting solenoid. B was varied from 0.05-0.22
Tesla. The corresponding anode voltage for electron trapping
ranged from around 500V to 10kV.
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Observed anode current vs. anode voltage near the spherical ~ Plot of the anode voltage vs. magnetic field at the

point for B = 0.076 T. showing the resonance peak.

maximum anode current points showing the curve

matches the theoretical spherical condition defined by
equation (1).




Permanent Magnet Solenoid

Iron “equator” ring

Iron pole piece

=

(numbers and sizes can vary).

Cross section of magnet assembly.

3D view of magnet assembly with
16 NIB magnets, 0.5 in. x 2.0 in.

Sketch of magnet assembly showing trap
and aluminum support elements.

..— Neodymium-iron-boron (NIB) magnets

Magnets and poles are assembled using
a milling machine mechanism to avoid
operator injury or magnet damage.
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COMSOL finite element model plot
showing uniform central field.



Hyperbolic Trap and Electron Source
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A new symmetrical titanium Penning trap was constructed for the next experiments.
It also utilizes a titanium Wehnelt and a nonmagnetic electron source constructed
from Macor, 316 SS pins, and a hairpin tungsten filament.
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The electron trapping resonance peaks were observed

at anode potential within 2% of the theoretical value.

Observed vs. Theoretical Resonance Potentials
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The 25 kV resonance peak was only observed once. Observation
of peaks above 16 kV was obscured by runaway discharge.



Attempts to Suppress Discharge Using Insulators and Cathode Surface Modifications to
Suppress Secondary Electron Emission from lon Impact.

l - B SRR NS

Various shapes of polyimide A Kel-F insulator ring around Cathodes with OD same
film insulation were examined to  the anode outer ring had no  Teflon insulators between as anode ID did not
block discharge outside the trap . effect on the discharge. the electrodes had no effect.  suppress discharge.

Coating the cathode surfaces Coating the cathode surfaces “lon burn” on the electrode surfaces
with colloidal graphite failed with titanium nitride also failed from the high voltage discharge. Note
to suppress the discharge. to suppress the discharge. clean area corresponding to anode ID.



A Gridded Cathode was Designed and Tested as Another
Approach to Suppression of Secondary Electron Emission.

An electron suppressor plate behind the grid biased several

volts positive relative to the grounded grid was intended to capture
secondary electrons produced from ion bombardment. This cathode
showed the same high voltage discharge as the solid cathode.

Test Cylinder Electrodes Were Able to Sustain N e
28 kV Potential Difference at 4 mm Spacing. ' '

Current efforts are being directed toward better understanding the nature of the discharge
In the trap (via direct observation inside the trap with a miniature video camera) and toward
developing an alternative trap geometry that can sustain higher voltages.




We have been investigating pulsing of the anode HV as a
means to suppress unwanted discharge®

Without magnetic field, breakdown occurs very rapidly (ns time scale) but with field,
quite slowly (100 us time scale)

F, =mv,on,v,
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" Thanks to our colleagues at Apollo Fusion, Inc.




Previous study of Penning discharge initiation

Formative processes of cold-cathode Penning discharges at low pressures

Katsuhiro Kageyama

Citation: Journal of Applied Physics 85, 723 (1984); doi: 10.1063/1.333130
View online: https://doi.org/10.1063/1.333130

View Table of Contents: http://aip.scitation.org/toc/jap/55/3

Published by the American Institute of Physics

A anode
HIGH-VOLTAGE r\‘::}
—PULSE MAGNET K: cathode
GENERATOR \ P- pin on the _ o ————

“““ i .II
SUI-i‘ G : = UHV 1

_|MEASURIN A ¢ cm
CIRCUIT K SYSTEM

\ VARIABLE
l = " = "y LEAK .

\ VALVE = }
CONTROLLER GAS -
LC:?\J SOURCE

FIG. 1. Experimental setup. The Penning cell with a tungsten pin, 0.2 mm
in diameter and 1 mm long, shown in the center, was used for all the experi-
ments, except for that described in Sec. I1 F. Anode inner diameter and
length are both 10 mm. The cathode is made of stainless-steel plates.
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FIG. 3. Discharge-current [, waveform for a stepped high anode voltage
V.. B=158 mT, P= 1.2 X 10 * Pa. Horizontal; | ms/div, vertical; 2.5
#A/div for I, (lower trace) and 2 kV/div for ¥, (upper trace). The spike
superimposed onto 7,, while V, is increasing rapidly, 1s a current flowing
through a floating capacitance between the anode and the cathode.

1 ms/div




Experimental study of discharge and resonant peaks with
pulsed anode HV
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Pulsed operation shows many new phenomena

e Pulses < 500 wus can eliminate discharge in conditions where DC discharge
occurs

e Some indication of resonant peak in pulsed mode
e Short pulses < 250 us show no or reduced peak
e Long pulses show discharge

e Some indication of suppression of resonance with pulsing
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Some recent data

 Two scans show
* Precursor peak?
* Resonance or not
* Discharge or not
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Summary and Planned Further Work

We have designed and constructed a permanent magnet Penning trap which exhibits theoretically
predicted electron trapping, but efforts to reach fusion relevant potentials have been blocked by
problems with high voltage discharge in the trap.

We have observed that puled operation can avoid discharge under favorable conditions

We are studying if pulsed operation can avoid discharge and simultaneously allow resonant
operation to provide virtual cathode for ion trapping in future work.

We are re-designing the 3He electronics to avoid electrical noise issues
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