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Abstract—Many different studies have claimed that articulatory
information can be used to improve the performance of automatic
speech recognition systems. Unfortunately, such articulatory in-
formation is not readily available in typical speaker-listener situ-
ations. Consequently, such information has to be estimated from
the acoustic signal in a process which is usually termed “speech-in-
version.” This study aims to propose and compare various ma-
chine learning strategies for speech inversion: Trajectory mixture
density networks (TMDNs), feedforward artificial neural networks
(FF-ANN), support vector regression (SVR), autoregressive arti-
ficial neural network (AR-ANN), and distal supervised learning
(DSL). Further, using a database generated by the Haskins Lab-
oratories speech production model, we test the claim that informa-
tion regarding constrictions produced by the distinct organs of the
vocal tract (vocal tract variables) is superior to flesh-point infor-
mation (articulatory pellet trajectories) for the inversion process.

Index Terms—Articulatory phonology, articulatory speech
recognition (ASR), artificial neural networks (ANNs), coarticula-
tion, distal supervised learning, mixture density networks, speech
inversion, task dynamic and applications model, vocal-tract vari-
ables.

I. INTRODUCTION

P ERFORMANCE of the current state-of-the-art automatic
speech recognition (ASR) systems suffer in casual or

spontaneous speech. This problem stems from the fact that
spontaneous speech typically has an abundance of variability, a
major part of which arises from contextual variation commonly
known as coarticulation. Phone-based ASR systems represent
speech as a sequence of non-overlapping phone units [89]
and contextual variations induced by coarticulation [86] are
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typically encoded by unit combinations (e.g., di- or tri-phone).
These di- or tri-phone [54]-based models often suffer from data
sparsity. It has been observed [70], [71] that coarticulation af-
fects the basic contrasting distinctive features between phones.
Hence, an ASR system using phone-based acoustic models may
be expected to perform poorly when faced with coarticulatory
effects. Moreover, di- or tri-phone-based models limit the
contextual influence to only the immediately close neighbors
and as a result, they are limited in the degree of coarticulation
that can be captured [58]. For example, in casual productions
of the word “strewn,” anticipatory rounding throughout the /str/
sequence can occur due to the vowel /u/. That is, coarticulatory
effects can reach beyond adjacent phonemes and, hence, such
effects are not covered by traditional tri-phone inventories.

Coarticulation has been described in a variety of ways in-
cluding the spreading of features from one segment to another
(also called assimilation). However, coarticulation can be better
understood as a property that occurs from a sequence of overlap-
ping discrete actions in the human vocal tract [38]. Articulatory
phonology [5], [6], [98] treats the variability in speech (specif-
ically coarticulation) from the speech production point of view,
using speech gestures [73] as primitive speech production units.
It has been shown [4]–[10] that the gesture-based speech pro-
duction model effectively accounts for speech variations such
as coarticulation effects by allowing gestural overlap1 in time
and gestural reduction in space.

Speech gestures are constriction actions produced by distinct
organs (lips, tongue tip, tongue body, velum, and glottis) along
the vocal tract [shown in Fig. 1(a)]. Speech gestures can be de-
fined in terms of eight vocal tract constriction variables also
known as tract variables (TVs), as shown in Table I. TVs de-
scribe geometric features of the shape of the vocal tract tube
in terms of constriction degree and location. An active gesture
is specified by activation onset and offset times and parameter
values for a set of critically damped, second-order differential
equations [11], shown in (1), where , , and are mass,
damping coefficient, and stiffness parameters of each TV (rep-
resented by ) and is the target position of the gesture:

(1)

Each TV involves its own set of associated articulators. Given
a time varying pattern (or constellation) of gestural activity, the
trajectories of the TVs are derived using the TAsk-Dynamic and

1The span of such overlap can be segmentally extensive [37], [86], [94] but
may not be more than 250 ms [36]. A consonantal duration can often be less
than 100 ms, which suggests that in consonantal context, coarticulatory effects
can theoretically spill-over to more than a tri-phone context.

1932-4553/$26.00 © 2010 IEEE



1028 IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING, VOL. 4, NO. 6, DECEMBER 2010

Fig. 1. (a) Tract variables (TVs) from different constriction locations. (b) Pellet
placement locations according to [115].

Fig. 2. Gestural activations for the utterance “miss you.” Active gesture regions
are marked by rectangular solid (colored) blocks. Smooth curves represent the
corresponding tract variable (TV) trajectories.

TABLE I
CONSTRICTION ORGAN, VOCAL TRACT VARIABLES, THEIR

UNIT OF MEASUREMENT, AND DYNAMIC RANGE

Applications (TADA) model [84], which is a computational im-
plementation of articulatory phonology. Fig. 2 shows the ges-
tural pattern of the utterance “miss you,” the respective gestural
scores and corresponding TVs as computed by TADA.

Fig. 3 show the waveforms (or portions thereof) of two
different utterances of the same word pair “perfect memory”
spoken by the same person (adapted from [9]). In Fig. 3(a),
the words “perfect” and “memory” are uttered with a slight

Fig. 3. Example of “perfect memory” adapted from [43], showing the acoustic
signal and the recorded articulatory data. (a) Shows the case where “perfect”
and “memory” are uttered as two different words (note, the /t/ burst is clearly
visible. (b) Shows the utterance of “perfect memory” in a fluent sentence where
the /t/ burst is reduced in the acoustic waveform.

pause between them, i.e., as isolated words. In Fig. 3(b), the
words “perfect” and “memory” are uttered more fluently with
no pause between the words. Comparing the waveforms at
the end of the word “perfect” shows that the /t/ burst of the
more carefully articulated utterance in part (a) is absent from
the more casually spoken utterance in part (b). This apparent
“deletion” of the phone /t/ is due to cross word-boundary
coarticulation in the more casual utterance, that is, the speaker
starts to articulate the /m/ in the word “memory” before the
speaker has finished articulating the /t/ in the word “perfect.”
This coarticulation is evident from the articulatory information
displayed for the tongue body, tongue tip, and lower lip. The
curves show how the vertical displacement for these articulators
(which can be understood as the reverse of the constriction
degrees of the relevant gestures) changes as a function of time.
While the vertical displacements for the different articulators
(tongue body, tongue tip and lower lip) are similar for these
two utterances during the /k/ and /t/ at the end of “perfect”
and during the /m/ at the beginning of “memory,’ the timing is
substantially different. For the more fluently spoken utterance,
the closure gesture for the /m/ (labeled as “stop lab”) overlaps
with the tongue tip constriction gesture for the /t/ (labeled as
“stop alv”).

However, this overlap does not occur for the utterance in
part (a). What is most important to note is that, although the
acoustic waveform for the more fluent utterance does not show
a /t/ burst because of the overlapping gesture for the /m/, the
closure gesture for the /t/ is still made by the speaker. Thus, the
complex variability (and sometimes relatively discrete changes)
that can occur in the acoustic signal is reduced to simple changes
in relative timing at the gestural representation level. For this
reason, we hypothesize that articulatory gestures will be able
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to better capture and model coarticulation than phone-based
sub-word units (di- or tri-phone) for ASR.

Speech variability has been an intrinsic problem with ASR
systems and Stevens [103] first pointed out that such problems
can be alleviated by incorporating anatomical or neuro-physio-
logical level of speech representation which may help to closely
simulate the process of human speech perception in the ASR
systems. Since then many researchers have ventured to realize
a speech production-based ASR architecture as presented in the
following subsections.

A. Feature Based ASR Systems

Early attempts to exploit speech production knowledge
in ASR systems were very limited in scope. From the late
1970s to the early 1990s most of the research [18], [44], [67],
[83] was focused on trying to decipher appropriate features
from the acoustic signal. Phonetic features provide descrip-
tive information to account for phonetic differences between
speech sounds [17], [66] and may be based on articulatory
movements, acoustic events, or perceptual effects [16]. A given
feature may be limited to a particular segment but may also
be longer (suprasegmental) or shorter (subsegmental) than a
segment span. Features that try to capture articulatory events
are commonly known as articulatory features (AF) or articu-
lator-bound features. The articulatory feature (AF) concept in
literature parallels the “distinctive features” (DF) concept of
phonological theory [15]. Although there exist some strong
similarity between the AFs and DFs, there are some subtle
differences as well. DFs consist of both articulator-free and
articulator-bound features [106] defining phonological feature
bundles that specify phonemic contrasts used in a language.
On the contrary, AFs define more physiologically motivated
features based on speech production; hence, they are fully
articulator-bound features. One of the earliest systems trying to
incorporate AFs was proposed by Schmidbauer [99], which was
used to recognize German speech using 19 AFs that described
the manner and place of articulation. The AF vectors were
used as input to phonemic hidden Markov models (HMMs)
and an improvement of 4% was observed over the baseline
for a small database. The AF features were also found to be
robust against speaker variability and showed less variance
in the recognition accuracy of different phonemic classes as
compared to the standard HMM-MFCC baseline. Deng [21]
proposed an ASR system inspired by a speech-production
model, in which the HMM states generated trended-sequence
of observations that were piece-wise smooth and continuous.
Deng et al. [20], [22], [23], [33] performed an exhaustive study
on their AF-based system, for which they used 18 multi-valued
features to describe place of articulation, vertical and horizontal
tongue body movement, and voice information. In their system,
the speech signal was modeled using a rule-based combination
of AFs where the features at transitional regions were allowed
to assume any intermediate target value between the preceding
and succeeding articulatory target values. Each individual AF
vector was modeled using HMM states, and the transition
and emission of a single ergodic HMM was trained using all
possible vectors. They reported an average improvement of
26% over the conventional phone-based HMM architecture

for a speaker independent classification tasks. Phone recog-
nition for the TIMIT dataset showed a relative improvement
of about 9% over the baseline system. For speaker-indepen-
dent word recognition using a medium sized corpus, they
reported a relative improvement of 2.5% over a single-compo-
nent Gaussian mixture phone recognizer. A phonetic-feature
classification architecture was presented in [119], where 18
features were detected using a time-delay neural network.
The outputs were used to obtain phoneme probabilities for
ALPH English spelling database. A hybrid artificial neural
network (ANN)–HMM architecture was proposed by Elenius
et al. [31], [32] for phoneme recognition; comparing spectral
representations against AF they reported an advantage of the
articulatory feature-based classifier for speaker independent
phoneme recognition. However, for a speaker-dependent task,
they observed that the spectral representation performed better
than the articulatory features. King et al. [60] used ANNs to
recognize and generate articulatory features for the TIMIT
database. They explored three different feature systems: binary
features proposed by Chomsky et al. [15], traditional phonetic
features defining manner and place categories, and features
proposed by Harris [47]. The recognition rates of the three
feature systems were similar. In a different study, Kirchhoff et
al. [62], [63] used a set of heuristically defined AFs and showed
that incorporating articulatory information in an ASR system
helps to improve its robustness. ANNs have been extensively
used in AF recognition from the speech signal. Wester et al.
[116] and Chang et al. [13] proposed separate place classifiers
for each manner class. Omar et al. [88] used a maximal mutual
information approach to obtain a subset of acoustic features
for the purpose of AF recognition. HMMs have also been re-
searched widely for AF recognition. Metze et al. [75] proposed
context-dependent HMM phone models to generate an initial
AF set, which were later replaced by a set of feature detectors
that used a likelihood combination at the phone or state level.
They showed a word error rate (WER) reduction of 1.8% for
the Broadcast news database and 1.6% for the Verbmobil task.
Dynamic Bayesian Networks (DBN) have also been explored
for the purpose of AF recognition. The major advantage of
DBNs is their capability to model explicitly the inter-depen-
dencies between AFs. Also, a single DBN can perform both the
task of AF recognition and word recognition. One of the earlier
works incorporating DBNs for the task of AF recognition was
performed by Frankel et al. [41], who showed that modeling
inter-feature dependencies improved AF recognition accuracy,
raising the overall frame-wise feature classification accuracy
from 80.8% to 81.5%. However, tying AF features to phone
level information overlooks the temporal asynchrony between
the AFs. To address this issue, an embedded training scheme
was proposed by Wester et al. [117], which was able to learn
a set of asynchronous feature changes from data. Cole et al.
[19] showed that the model proposed in [117] provided a
slight increase in accuracy for a subset of the OGI number
corpus over a similar model trained on phone-derived labels.
Frankel et al. [42] proposed a hybrid ANN/DBN architecture,
where the Gaussian mixture model (GMM) observations used
by the DBNs are replaced by ANN posteriors. This hybrid
ANN/DBN architecture combined the discriminative training
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power of ANN and the inter-feature dependency modeling
capability of DBNs. The feature recognition accuracy reported
in their paper for the OGI Number corpus was 87.8%. In a
different study, Cetin et al. [12] proposed a tandem model
of MLP and HMM as an ASR system. The MLPs were used
for AF classification and the HMM outputs used a factored
observation model. Their proposed tandem model using AFs
was found to be as effective as the phone-based model. Also,
the factored observation model used in their research was found
to outperform the feature concatenation approach, indicating
that the acoustic features and tandem features yield better
results when considered independently rather than jointly.
At the 2006 Johns Hopkins University Workshop, Livescu et
al. [68] investigated the use of AFs for the observation and
pronunciation models for ASR systems. They used the AF
classifier outputs in two different ways: 1) as observations in a
hybrid HMM/ANN model and 2) as a part of the observation
in a tandem approach. In this paper, they used both audio and
visual cues for speech recognition and the models were imple-
mented as DBNs. They used Switchboard [61] and the CUAVE
audio-visual digits corpus to test their approach. They observed
that the best ASR performance came from the tandem approach
whereas, although the hybrid models could not offer the best
accuracy, they require very little training data. They predicted
that the hybrid model-based approaches may hold promises for
multilingual systems. Hasegawa-Johnson et al. [48] exploited
the asynchrony between phonemes and visemes to realize a
DBN-based speech recognition system. They noted that the ap-
parent asynchrony between acoustic and visual modalities can
be effectively modeled as the asynchrony between articulatory
gestures corresponding to the lips, tongue and glottis/velum.
Their results show that combining visual cues with acoustic
information can help reduce the WER at low SNR and the
WER is found to further reduce if the asynchronies amongst
gestures are exploited.

B. Direct Articulatory Information Retrieval

Typically hypothesized or abstract articulatory features have
been used widely in ASR research aiming to incorporate speech
production models. Another distinct line of research deals with
using direct articulatory (recorded or estimated) trajectories.
In a typical ASR framework, the only known parameter is
the acoustic speech signal and recorded articulatory data is
not readily available (such data may be available for research
purposes, but cannot be assumed to be available for real-world
applications); hence, such information needs to be estimated
from the acoustic observations. There are few ASR results in
the literature using direct articulatory information owing to
the difficulty in reliably predicting such articulatory dynamics
from the speech signal. An alternative is to use actual articu-
latory recordings directly in the ASR system, but such a setup
is not desirable for real-world applications. In an interesting
study by Frankel et al. [40], a speech recognition system was
developed that uses a combination of acoustic and articulatory
features as input. They showed that using articulatory data
from direct measurements in conjunction with MFCCs resulted
in a significant improvement in performance (4% in [39] and
9% in [40]) over the baseline system. However, the phone

classification accuracies from using estimated articulatory data
reported in their work did not show any improvement over
the baseline ASR system, which indicates that a significant
amount of effort still needs to be directed toward efficiently
estimating articulatory information from speech. The process
of retrieving articulatory information from the speech signal is
usually termed “speech-inversion.” Speech inversion has been a
widely researched topic in the last 35 years. One of the earliest
as well as ubiquitously cited works in this area was by Atal et
al. [1] in which information in the acoustic space was used to
predict corresponding vocal tract configuration. Rahim et al.
[92], [93] used an articulatory synthesis model to generate a
database of articulatory-acoustic vector pairs and they trained
multi-layered perceptrons (MLPs) to map from acoustic data
to the vocal tract area functions. Shirai et al. [101] proposed an
analysis-by-synthesis approach, which they termed as “Model
Matching,” where speech was analyzed to generate articulatory
information and then the output was processed by a speech
synthesizer such that it had minimal distance from the actual
speech signal in the spectral domain. Kobayashi et al. [64]
proposed a feed-forward MLP architecture with two hidden
layers that uses the same data as used in [101] to predict the
articulatory parameters and showed faster performance and
better estimation accuracy. Regression techniques have been
explored a number of times for speech inversion. Ladefoged
et al. [65] used linear regression to estimate the shape of the
tongue in the midsagittal plane, using the first three formant
frequencies in constant vowel segments. Exploiting neural
networks gained popularity after the work of Papcun et al. [90],
in which MLPs were used to obtain articulatory motions for six
English stop consonants. Richmond [95] used mixture density
networks (MDNs) to obtain the articulator trajectories as con-
ditional probability densities of the input acoustic parameters.
He showed that the articulations with critical constrictions
show less variability in the probability density functions than
the noncritical articulatory trajectories. He also used ANNs to
perform the speech inversion task and showed that the MDNs
tackle the non-uniqueness of the speech inversion problem
more appropriately than ANNs. Non-uniqueness is a problem
in speech inversion because different vocal tract configurations
can yield similar acoustic realizations. However, separate
studies by Qin et al. [91] and Neiberg et al. [85] show that the
majority of normal speech is produced with a unique vocal tract
shape and there are only a few instances of non-uniqueness;
suggesting that non-uniqueness may not be so critical an issue.
One-to-many mappings (or non-uniqueness) can be of the
following types: 1) a given speaker may be able to produce
multiple articulatory configurations for a given phone (e.g.,
bunched versus retroflex for /r/ [34], [35]); 2) a given acoustic
observation could potentially be generated from many different
possible sets of vocal tract area functions. However, the human
vocal tract is highly constrained and, as a result such type-2
non-uniqueness is well suppressed [85], [91], a result that is
supported by our analysis as well. The data used in this paper
may contain type-2 non-uniqueness; we do not aim to analyze
type-1 non-uniqueness here.

In a different study of speech inversion, Hogden et al. [51]
used vector quantization to build a codebook of articulatory-
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acoustic parameter pairs. They built a lookup table of articu-
latory configurations and used the lookup table along with the
codebook to estimate articulator positions given acoustic in-
formation. They reported an overall average root mean square
error (RMSE) of approximately 2 mm. A similar codebook ap-
proach was pursued by Okadome et al. [87] who used data
recorded from three Japanese male speakers which was consid-
erably larger than the dataset used in [51]. They also augmented
the codebook search process by making use of phonemic infor-
mation of an utterance. The average RMSE reported by their
algorithm was around 1.6 mm when they used phonemic infor-
mation to perform the search process.

Efforts have also been made in implementing dynamic
models for performing speech inversion. Dusan [30] used
extended Kalman filtering (EKF) to perform speech inver-
sion by imposing high-level phonological constraints on the
articulatory estimation process. In his approach, the speech
signal is segmented into phonological units and constructed
trajectories based on the recognized phonological units; the
final estimate was performed by using Kalman smoothing.
Dynamic model-based approaches are typically found to work
well for vowels but often fail for consonants [53].

C. Vocal Tract Resonances for ASR

Apart from articulatory variables, other sources of informa-
tion such as vocal tract shapes and vocal tract resonances (VTR)
can be used to capture the dynamics of natural speech. Deng
et al. [24] and Deng [25] proposed a statistical paradigm for
speech recognition where phonetic and phonological models are
integrated with a stochastic model of speech incorporating the
knowledge of speech production. In such an architecture, the
continuous and dynamic phonetic information of speech pro-
duction (in the form of vocal tract constrictions and VTRs) is
interfaced with a discrete feature-based phonological process. It
is claimed [25] that such integration helps to globally optimize
the model parameters that accurately characterize the symbolic,
dynamic, and static components in speech production and also
contribute in separating out the sources of speech variability
at the acoustic level. Their work shows [24] that synergizing
speech production models with a probabilistic analysis-by-syn-
thesis strategy may result in automatic speech recognition per-
formance comparable to the human performance. Deng et al.
[26], [69] proposed a statistical hidden dynamic model to ac-
count for phonetic reduction in conversational speech, where
the model represents the partially hidden VTRs and is defined
as a constrained and simplified nonlinear dynamical system.
Their algorithm computes the likelihood of an observation ut-
terance while optimizing the VTR dynamics that account for
long term context-dependent or coarticulatory effects in spon-
taneous speech. In their work, the hidden VTR dynamics are
used as an intermediate representation for performing speech
recognition, where many fewer model parameters had to be es-
timated as compared to tri-phone-based HMM baseline recog-
nizers. Using the Switchboard dataset, they have shown reduc-
tion [26], [69] in word error rates when compared with base-
line HMM models. Togneri et al. [110] used the hidden-dy-
namic model to represent speech dynamics and explored EKF,

comparing its performance with the expectation–maximization
(EM) algorithm to perform joint parameter and state estima-
tion of the model. Deng et al. [27] proposed an efficient VTR
tracking framework using adaptive Kalman filtering, and exper-
iments on the Switchboard corpus demonstrated that their archi-
tecture accurately tracks VTRs for natural, fluent speech. In a re-
cent study, Deng et al. [28] showed that a structured hidden-tra-
jectory speech model exploiting the dynamic structure in the
VTR space can characterize the long-term contextual influence
among phonetic units. The proposed hidden-trajectory model
[28] showed improvement in phonetic recognition performance
on the TIMIT database for the four broad phone classes (sono-
rants, stops, fricatives, and closures) when compared with the
HMM baseline.

D. Generative Models Using Deep Architectures

The first-order Markov chain assumption and the conditional
independence assumption deter the HMM-based acoustic
model’s capabilities to account for most of the variability seen
in natural speech. To account for the limited representability of
the HMM-based acoustic models, generative models [49] with
deeper architectures are currently being explored. Such deeper
architectures have the capability to model streams of mutually
interacting knowledge sources by representing them in mul-
tiple representation layers. A recent study by Mohamed et al.
[81] has proposed a deep belief network [50] based acoustic
model that can account for variability in speech stemming
from the speech production process. A deep belief network is a
probabilistic generative model consisting of multiple layers of
stochastic latent variables [81]. Restricted Boltzmann machines
(RBMs), owing to their efficient training procedure are used
as the building block for deep belief networks. These authors
applied a phone recognition task to the TIMIT corpus using
MFCCs with delta (velocity) and delta-delta (acceleration) as
the acoustic features and reported a phone error rate of 23%,
compared to 25.6% obtained from Bayesian triphone HMM
model reported in [76]. They have also shown that their system
offers the least phone error rate compared to some previously
reported results. Another recent study by Schrauwen et al. [100]
proposed using a temporal reservoir machines (TRMs) which
is a generative model based on directed graphs of RBMs. Their
model uses a recurrent ANN to perform temporal integration of
the input which is then fed to an RBM at each time step. They
used the TRM to perform word recognition experiments on the
TI46 dataset (subset of TIDIGITS corpus) and have used the
Lyon passive ear model to parameterize the speech signal into
39 frequency bands. The smallest WER reported in their paper
is 7%.

E. Articulatory Gesture Motivated Features for ASR Systems

Several efforts have been made [72], [107], [108] to design a
speech recognition system that exploits articulatory information
(akin to articulatory gestures) based on the human speech pro-
duction mechanism. In particular, Sun et al. [107], [108] showed
improvement in ASR performance by using an overlapping fea-
ture-based phonological model defined by general articulatory
dynamics. Gestural activation recovery from the acoustic signal
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has been performed by [2], [57] using a temporal decomposi-
tion method, where the gestural activations represent the time in-
terval where a gesture is active. However, since it is the values of
the dynamic parameters of active gestures (such as stiffness and
target), that serve to distinguish utterances in a gesture-based
lexicon [7], [10], estimating only gestural activation does not
provide sufficient information for lexical access. To address this,
Zhuang et al. [122] proposed a gestural pattern vector (GPV) as
a recognition unit (which is an instance of gestural activation
and corresponding dynamic parameters) and a model to predict
the GPVs from the TVs. In their work [123], they assumed a
priori knowledge of the TVs; using that knowledge they cor-
rectly recognized GPVs 80% of the time and reported that the
estimated GPVs yielded a word recognition rate of 85% for a
dictionary of 139 words. Unlike Zhuang et al.’s work, we do
not explicitly assume a priori knowledge of the TVs; hence, we
have explored [77] the feasibility and accuracy of estimating
TVs from the speech signal, the major part of which is reported
in this paper. TVs are not only beneficial for accurately recog-
nizing gestures but also we have shown [78] that they can help
in improving noise-robustness of ASR systems.

In our study, we use TVs (constriction degree and locations
at the distinct constricting organs in the vocal tract) as articula-
tory information (instead of pellet trajectories) to model speech
dynamics. The benefits of using TVs as opposed to the and
coordinates of transducers attached to the articulators are three-
fold. First, as McGowan [74] pointed out, the TVs specify the
salient features of the vocal tract area functions more directly
than the articulators. Second, it is constrictions in TV space that
articulatory gestures directly control [84], [98], and which em-
body the speaker’s phonological goals. There is a one-to-many
relation between TV values and pellet positions (both within and
across speakers), and it is the TV value that is more informa-
tive in terms of phonological category and lexical access. There
may be one TV specification in terms of constriction degree
and location that can have many different sets of pellet posi-
tions in terms of Cartesian coordinates that represent the same
vocal tract constriction. This difference is due to the fact that
the pellets are absolute measurements whereas the TVs are rel-
ative measurements. For example, TV description of a tongue
tip stop will always exhibit a value of zero for TTCD (dis-
tance of tongue tip from palate), even though the pellet posi-
tions will differ depending on the location of pellets on an in-
dividual’s vocal tract, the vowel context, etc. Thus, TVs can be
expected to bear a relation to speech acoustics that is closer to
one-to-one than does the complete area function, and help to re-
duce the non-uniqueness of speech inversion. Finally, we have
shown in a different study that incorporating TV information
(estimated from the acoustic signal) improves the performance
of gesture recognition [80]. Hence, better and accurate ways of
TV estimation would directly aid gestural recognition perfor-
mance and in turn would aid in realizing an ASR system that
uses speech gestures as sub-word units. As mentioned before,
we intend to use the estimated TVs to recognize speech articu-
latory gestures. Further, we aim to realize an ASR architecture
that uses these gestures as the sub-word level lexical represen-
tation of speech. In our gesture-based ASR architecture we in-
tend to use pseudo-TVs (that should be speaker independent but

will follow articulatory dynamics closely) as hidden interme-
diate variables between acoustic observations and articulatory
gestures, thereby providing a cross-modal bridge between the
continuous acoustic regime and the discrete articulatory regime
(i.e., the gestural score). The estimation of TVs presented in this
paper is the initial step in determining an appropriate model for
the proposed task. We have previously proposed SVR architec-
ture [77] for TV estimation and have shown that smoothing or
low-pass filtering of the estimated TVs improved the result. In
another study [79], we have shown that neural networks can be
efficiently used for TV estimation, and the optimality of acoustic
observation contextual information plays a critical role. In this
paper, we perform a more extended study, deploying several ma-
chine-learning approaches and analyzing their performance for
the TV estimation task. We also compare the performance of
TV estimation with that of articulatory pellet trajectory estima-
tion and show that the former is relatively more accurate than
the latter. Not only can TVs contribute to a gesture-based ASR
architecture, but they should also have applications in different
areas such as in assistive devices (e.g., visual speech for the
hearing impaired), audio-visual speech, speech production and
synthesis, language acquisition, education, etc. We have also
shown [78] that estimated TVs can help to improve noise ro-
bustness of ASR architecture.

The organization of the paper is as follows. Section II pro-
vides a brief introduction to the dataset used in our experiments
and their parameterization. Section III explores several different
machine learning strategies that we used for TV estimation:
support vector regression (SVR), feedforward artificial neural
network (FF-ANN), and autoregressive (AR) ANN, distal
supervised learning (DSL), trajectory mixture density networks
(TMDNs), and Kalman smoothing. Section IV presents the
experiments, results and discussions, which are in two parts:
1) comparison of estimation performance between TVs and
pellet trajectories and hence evaluation of the relevance of
the TVs over pellet trajectories as articulatory information for
acoustic-to-articulatory mapping and 2) a detailed description
of our TV estimation procedure. The conclusion is given in
Section V.

II. DATASET AND SIGNAL PARAMETERIZATION

We aim to model speech using overlapping articulatory
gestures, where the degree and extent of overlap between the
gestures are determined by coarticulatory effects. Unfortu-
nately, the spontaneous speech databases available for ASR
do not come with any gestural specification. For this reason,
TADA along with HLsyn [45], [46] (a parametric quasi-ar-
ticulator synthesizer developed by Sensimetrics, Inc.) is used
in this research (as shown in Fig. 4) to generate a database
that contains synthetic speech along with their articulatory
specifications. From text input, TADA generates gestural scores
(time functions of gesture activation), TV time functions and
simulated pellet trajectories. The simulated pellet trajectories
correspond to the flesh-point locations specified in Fig. 1(b). It
also generates a set of parameters that can be used by HLsyn
to create synthetic speech. The synthetic database used in this
research was generated by inputting the text for the 420 unique
words found in the X-ray microbeam corpus [115]. The output
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Fig. 4. Flow diagram for generating synthetic speech and the associated artic-
ulatory information using TADA and HLSyn.

synthetic speech was sampled at 10 kHz and the TV time func-
tions and gestural scores were sampled at 200 Hz. Seventy-five
percent of the data were used for training, ten percent for
validation, and the rest for testing. It should be noted here that
the target of the “critical” tract variable (e.g., LA for /b/) for
a given phonological unit is invariant in TADA’s lexicon, and
therefore in the gestural score. However, the actual TV values
generated are not invariant due to contextual dependency by
coproduction. Hence, the TV values are not “predefined” for a
given phoneme. In TADA, it is possible to implement different
relative amounts of articulator contribution to TV constriction
by modulating the articulator weights. For example, the same
LA trajectory could be produced by different amounts of the
contributions of the upper lip, lower lip, and jaw. In this study,
however, only a single set of articulator weights for a given
gesture was used. In our future studies, we intend to explore
varying sets of articulator weights and expect that the results
will show even more strongly that TVs for a given phonological
unit are less variant than the pellets (flesh-point articulatory
information).

The speech signal was parameterized as acoustic parameters
(APs) and mel-frequency cepstral coefficients (MFCCs). APs
[14], [56], [104] are knowledge-based acoustic-phonetic feature
sets that provide phonetic information, such as formant values,
pitch information, mean Hilbert envelope, energy onsets and
offsets, and periodic and aperiodic energy in different subbands
[29]. The APs were measured using a 10-ms window with a
frame rate of 5 ms. For the APs, the feature dimension was much
higher compared to the MFCCs; 40 different APs were selected
(based upon their relevance). For the MFCCs, 13 cepstral co-
efficients were extracted. Each of these acoustic features was
measured at a frame rate of 5 ms (time-synchronized with the
TVs) with window duration of 10 ms. The acoustic features and
the target articulatory information (the TVs and the simulated
pellet trajectories) were z-normalized and then scaled such that
their dynamic range is confined within , except
for SVR where the dynamic range is scaled between .
It has been observed [86], [95] that incorporating dynamic in-
formation helps to reduce the non-uniqueness problem for the
speech inversion task; hence, the input features are contextual-
ized in all the experiments reported in this paper. The feature
contextualization is defined by the context-window parameter

, where the current frame (with feature dimension ) is con-
catenated with frames from before and after the current frame
(with a frame shift of 2 or time shift of 10 ms), generating a
concatenated feature vector of size . From our prior
research [79], we have identified that the optimal context pa-
rameter for the MFCCs is 8 (context duration of 170 ms) and

for the APs is 9 (context duration of 190 ms) which will be used
in the experiments presented in the rest of the paper.

III. MACHINE LEARNING APPROACHES FOR SPEECH INVERSION

The process by which articulators in the human vocal tract
produce the acoustic speech signal can be represented by a func-
tion as

(2)

where is a vector that represents the acoustic speech signal,
is a vector representing the configuration of the articulators,

and is the function that defines the forward mapping from
the articulatory domain to the acoustic domain. Thus, given a
vector , representing a specific articulatory configuration, we
can obtain a specific speech output , given is known. In
recognition tasks, the acoustic speech signal is available to
us with little or no articulatory data except what we can infer
from the speech signal. If we define a function such that

(3)

then the articulatory configuration can be obtained from the
speech signal sample using the function . Thus, is the in-
verse of function and (3) represents the task of acoustic to
articulatory speech inversion. Given the data-pair , if
is estimated directly, then the resultant model is termed a direct
inverse model. There are several indirect inverse model estima-
tion approaches which do not seek to directly estimate from
the data-pair .

Several machine learning techniques have been implemented
for the task of speech inversion. Toutios et al. [112], [113]
have used SVR to estimate electromagnetic midsagittal artic-
ulography (EMA) [97] trajectories for the MOCHA database
and their results were found to be quite similar to that of the
ANN-based approached proposed in [95]. ANN is widely
known for its versatility in nonlinear regression problems.
However, they fall short in ill-posed regression problems
where the ill-posedness is due to one-to-many mapping. To
address the one-to-many mapping scenarios, Jordan et al.
[55] proposed supervised learning with distal teacher or distal
supervised learning (DSL) and Bishop [3] proposed mixture
density networks. While SVR and ANN-based approaches fall
in the category of direct-inverse model, the DSL and the TMDN
approaches can be identified as indirect inverse models. This
section introduces the various machine learning techniques that
we will explore in our speech inversion experiments.

A. Hierarchical Support Vector Regression

The support vector regression [102] is an adaptation of
Vapnik’s support vector classification algorithm [114] to the
regression case. Given a set of training vectors and a target
vector such that , the SVR algorithm seeks to find an
optimal estimate (in terms of structural risk minimization) for
the function , which has at most deviation from the
actually obtained targets for all the training data and at the
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same time is as flat as possible. The -SVR algorithm defines
that estimate as

(4)

where is the kernel used, is the bias terms, and ,
are the coefficients obtained from the solution of the quadratic
problem

(5)
where

The constant is the tradeoff between the flatness of and the
amount up to which deviations larger than are tolerated in the
solution. and are parameters that are user-defined.

can be as high as infinity, while usual values for are 0.1 or
0.01. The kernel function is used to transform the data into
a high dimensional space to induce nonlinearity in the estimate
function. SVR performs nonlinear regression by projecting the
data into a high dimensional space via and then performs
linear regression in that space. We have used radial basis func-
tion (RBF) kernel with user-defined parameter

(6)

B. Feedforward Artificial Neural Networks (FF-ANN)

Since Papcun et al. [90] used MLPs (layered ANNs using per-
ceptron rule) to estimate articulatory trajectories for six English
stop consonants, the potential of ANNs for the speech inversion
task has been enthusiastically investigated. Zachs et al. [121]
and Richmond [95] have studied the potential of ANNs for per-
forming speech inversion. Once trained, ANNs require compar-
atively low computational resources compared to other methods
both in terms of memory requirements and execution speed [79],
[95]. ANN has the advantage that it can have inputs and
outputs; hence, a complex mapping of vectors into dif-
ferent functions can be achieved. In such an architecture, the
same hidden layers are shared by all the output TVs (shown in
Fig. 5), which endows the ANNs with the implicit capability
to exploit any cross-correlation that the TVs may have amongst
themselves [79]. The FF-ANNs were trained with backpropa-
gation using scaled conjugate gradient (SCG) algorithm [82].

C. Autoregressive Artificial Neural Networks (AR-ANN)

The estimated articulatory trajectories from SVR and
FF-ANN-based direct inverse models were found to be cor-
rupted by estimation noise. Human articulator movements are
predominantly low pass in nature [52] and the articulatory tra-
jectories usually have a smoother path, defined by one that does

Fig. 5. Architecture of the ANN-based direct inverse model.

Fig. 6. Architecture of the AR-ANN-based direct inverse model.

not have any Fourier components over the cutoff frequency of
15 Hz. Nonlinear AR-ANN shown in Fig. 6, has a feedback
loop connecting the output layer with the input, which helps
to ensure smoother trajectories for the articulatory trajectories.
The output of AR-ANN can represented as

(7)

The AR-ANN has its own disadvantages: 1) the architecture
has to be trained with dynamic-backpropagation or backprop-
agation in time, which is computationally very expensive, 2) a
single architecture cannot be trained easily for all the articula-
tory trajectories2; hence, a single AR-ANN has to be trained for
each articulatory trajectory.

Both FF-ANN and AR-ANN are trained based on mini-
mization of the sum-of-squares error approach. Given a set
of training and target data set and a set of neurons
with weights and biases defined by and , respectively, the
sum-of-squares error is defined by

(8)

where defines the network output, where the net-
work is defined by weights and biases . Considering a dataset
of infinite size, i.e., , (8) can be written as

(9)

(10)

The minimization of the error function with respect to
gives the following [3]:

(11)

Using (11) it can be shown that

(12)

where is the conditional expectation of A conditioned
on B, and are the weights and biases of the network

2This may be because the dynamics of the different trajectories are different
in nature and may not correlate so strongly with one another.
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Fig. 7. Distal supervised learning approach for obtaining acoustic to TV
mapping.

after training. Hence, (12) shows that networks that are opti-
mized based on sum-of-squares approach generate average of
the target data points conditioned on the input. Hence, direct in-
verse models obtained from supervised learning algorithms re-
solve one-to- (where ) inconsistencies by averaging
[3], [55] across all the candidates. If the set of possible
candidates form a non-convex set, then the average of the
candidates does not necessarily belong to that set; hence, the
solution obtained is not necessarily the correct inverse solution.

D. Distal Supervised Learning (DSL)

To address the issues with conventional supervised learning
architectures for one-to-many mapping cases, Jordan et al. [55],
proposed supervised learning with a distal teacher or DSL. In the
DSL paradigm, there are two models placed in cascade with one
another: 1) the forward model (which generates acoustic fea-
tures given the articulatory trajectories, hence M-to-1 mapping)
and 2) inverse model (which generates the articulatory trajecto-
ries from acoustic features, hence 1-to-M mapping). Given a set
of pairs, DSL first learns the forward model, which is
unique but not necessarily perfect. DSL learns the inverse model
by placing it in cascade with the forward model as shown in
Fig. 7. The DSL architecture can be interpreted as an “anal-
ysis-by-synthesis” approach, where the forward model is the
synthesis stage and the inverse model is the analysis stage. In
the DSL approach, the inverse model is trained (its weights and
biases updated) using the error that is backpropagated through
the forward model whose previously learned weights and biases
are kept constant.

Considering a forward mapping between an input vector
and an output vector , using a vector of network weights and
biases, and , the relationship can be expressed as

(13)

Learning the forward model is based on the following cost func-
tion [55]:

(14)

where is the desired target for a given input. For the inverse
model, [55] defined two different approaches, a local opti-
mization approach and an optimization along the trajectory
approach. The local optimization approach necessitates using an
online learning rule, whereas the optimization along trajectory
requires recurrency in the network (hence, error minimization
using backpropagation in time), both of which significantly
increase the training time and memory requirements. In this
paper, we propose a global optimization approach, which uses
the tools of DSL as proposed in [55], but instead uses batch
training in the feedforward network. The cost function that the
DSL tries to minimize is represented as

(15)

where is the total number of training samples, is the target
vector for the th training sample and is the actual target
output from the network. The weight update rule is as follows:

(16)

where is the learning rate, represents the weights of the
network at time index . The gradient can be obtained from (15)
using the chain rule

(17)

where is the estimated target vector for the th training
sample at the th time instant.

E. Trajectory Mixture Density Networks (TMDN)

Mixture density networks (MDNs) [3] combine the conven-
tional feedforward ANNs with a mixture model. In MDN archi-
tectures the ANN maps from the input vector to the parameters
of a mixture model (shown in Fig. 8) to generate a conditional
pdf of the target , conditioned on the input . Typically, a GMM
is used in the MDN setup because of their simplicity and the fact
that a GMM with appropriate parameters can approximate any
density function. A Gaussian kernel is represented as

(18)

where and are the input and the target vector, is the
center of the th kernel, and is the spherical covariance
(this assumption can be relaxed by considering either a diagonal
or a full covariance) for each Gaussian kernel and is the input
dimension. In this setup, the probability density of the target
data conditioned on the input using a GMM with mixtures
can be represented as

(19)
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Fig. 8. MDN architecture.

where is the prior probability and is the condi-
tional probability density given the th kernel. To satisfy the fol-
lowing conditions for the prior probabilities

and (20)

The following “softmax” function is used to define [3]

(21)

where is the ANN output corresponding to the prior proba-
bility for the th mixture of the GMM component. The variances
and means of the GMM model are related to the ANN outputs
as follows:

and (22)

where and are the ANN outputs corresponding to the
variance and the mean of the th mixture. The MDN is trained
by minimizing the following cost function:

(23)

As seen in Fig. 8, the ANN part of MDN generates the GMM
parameters which are used to estimate the cost function .
The cost function is minimized with respect to the ANN
weights and biases.

The derivative of the cost function is evaluated separately
with respect to the priors, means and variances of the mixture
model that are back-propagated through the network to yield
the derivative of the cost function with respect to the network
weights and biases, more details available at [3]. The standard
MDN architecture provides the conditional probability density
of the targets conditioned on the input. To estimate the articu-
latory trajectories from the conditional probability densities, a
maximum-likelihood parameter generation (MLPG) algorithm
was proposed in [111]. The MLPG algorithm was used with
MDN architecture in [96] and the resulting architecture was
named as the trajectory MDN or (TMDN). In TMDN architec-
ture, the target vector is augmented with dynamic information
to yield a vector sequence as shown as follows:

where
(24)

In our work, the dynamic target vectors are calculated as

(25)

(26)

where is the total duration of the window and the window
is defined as

where
if
otherwise

and (27)

where is a hamming window. The vector can be
related to the target vector by the following relation, where the
details about the transformation matrix can be found from
[109], [111].

(28)

In TMDN architectures the augmented feature vector is used
to train the MDN models, where is derived from the target
vector using the transformation matrix . The MDN in such
a case gives the following conditional density . For the
simplest case, where the GMM in the MDN has a single mix-
ture, the target trajectory is generated by maximizing
or with respect to as shown in (29), where is the
mixture sequence:

(29)

A set of linear equations are generated (detailed derivation given
in [111]) from (29), as

(30)

where

(31)

and are the 3 1 mean vector and the 3 3 diagonal
covariance matrix (for a single mix GMM). Solving (30) for
gives the required maximum-likelihood trajectory. For MDNs
with multiple mixtures, the approximation with suboptimal mix-
ture sequence technique discussed in [109] is used.

F. Kalman Smoothing

The estimated articulatory trajectories were found to be
corrupted with estimation noise from all except the AR-ANN
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model. It was observed that smoothing the estimated articula-
tory trajectories improved estimation quality and the correlation
and reduced the RMSE. This is a direct consequence of the ob-
servation made in [52], which claimed that articulatory motions
are predominantly low pass in nature with a cutoff frequency
of 15 Hz. This led us to introduce a Kalman smoother-based
postprocessor in the architectures discussed above. Since
articulatory trajectories are physical quantities, they can be
approximately modeled as the output of a dynamic system. For
the proposed architecture, we selected the following state-space
representation

(32)

with the following model parameters:

and

(33)

where is the time difference (in milliseconds) between two
consecutive measurements, is the state vector and
contains the position and velocity of the articulatory trajectories
at time instant is the estimated articulatory trajectory which
is considered as noisy observation of the first element of the
state . The variables and are process and measurement
noise, which have zero mean, known covariance and , and
are considered to be Gaussian. The goal is to find the smoothed
estimate of the state given the observation sequence

, that is

(34)

Although, and are known parameters of the state space
representation, the unknown parameter set
should be learned from the training set. After learning the un-
known parameter set the smoothed state

is estimated by the Kalman Smoother in an optimal sense.

IV. EXPERIMENTS, RESULTS, AND DISCUSSION

In our experiments, we demonstrate that given a speech
signal, tract variables can be estimated with a high accuracy.
We begin our experiments by comparing the performance of
TV estimation with pellet trajectory estimation, where we will
show that TVs can be estimated more accurately than the pellet
trajectories. Next in Section III, we perform a detailed analysis
of TV estimation using the machine learning algorithms. The
speech signal was parameterized as MFCCs and APs and then
contextualized as discussed in Section II. The shape and dy-
namics of the estimated articulatory trajectories were compared
with the actual ones using three quantitative measures: the root
mean-squared (rms) error, mean normalized rms error [59] and
the Pearson product-moment correlation (PPMC) coefficient.
The RMSE gives the overall difference between the actual and
the estimated articulatory trajectories, whereas the PPMC gives

TABLE II
OPTIMAL NUMBER OF NEURONS FOR EACH ARTICULATORY

TRAJECTORY FOR 1-MIX MDN

a measure of amplitude and dynamic similarity between them.
The RMSE and the PPMC are defined as follows:

(35)

(36)

where represents the estimated TV vector and represents
the actual TV vector having data points. The RMSE pro-
vides a performance measure in the same units as the mea-
sured articulatory trajectories. Some of the TVs have a different
measuring unit (e.g., TBCL and TTCL are measured in de-
grees) from the pellet trajectories (all pellet trajectories are mea-
sured in mm). Thus, to better summarize the inversion perfor-
mance for all articulatory trajectories, we use the non-dimen-
sional mean normalized RMSE, [59] and its av-
erage, defined by

(37)

where is the number of articulatory trajectories considered (8
for TVs and 14 for pellet trajectories).

A. Comparing TV and Pellet Trajectory Estimates

TMDN has been used by Richmond [96] to estimate ar-
ticulatory pellet trajectories for the multichannel articulatory
MOCHA dataset [120]. Results from [96] indicate that TMDN
offers much better accuracy over ANN for pellet trajectory
estimation. Using a similar approach as laid out in [96], we
trained individual MDN models for each articulatory trajectory,
where the articulatory trajectories were augmented with static,
delta, and delta-delta features as shown in (24). The MDN was
built such that it generated the parameters of a GMM model
with diagonal covariance matrix; yielding the parameters for a
3-D Gaussian mixture (one dimension for each feature stream
of static, delta, and delta-delta features). The models were
trained with one to four mixture components, but increasing
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TABLE III
PERFORMANCE COMPARISON BETWEEN TV AND PELLET TRAJECTORY ESTIMATION

the number of mixtures did not show any appreciable improve-
ment of the results in our case; hence, we will be presenting
the results from the single mixture MDN only. The MDNs
were built with a single hidden layer architecture, where the
number of neurons in the hidden layer was optimized using the
validation set. Table II shows the optimal number of neurons
for each articulatory trajectory for each acoustic feature type.
The networks were trained with the SCG algorithm using a
maximum of 4000 training iterations. After the MDNs were
trained, the MLPG algorithm was run ad-hoc on the resulting
sequence of MDN generated pdfs for the validation set. The
RMSE between the estimated and the groundtruth articulatory
trajectory was used as the validation error.

The mean of the static features generated by the MDN should
be equivalent to the output of a single hidden layer ANN [96]
having linear activation functions, as noted from (12); these out-
puts are considered as single-hidden layer ANN outputs. The
TMDN as well as the ANN outputs for each articulatory trajec-
tory were processed with a Kalman smoother and the results are
shown in Table III. The Kalman smoother was found to improve
the PPMC on an average by 3% for both TVs and pellets.

In addition, 3-hidden layer FF-ANN architectures with
tan-sigmoid activation were implemented for both the TVs
and pellet trajectories. The FF-ANN architectures had as many
output nodes as there are articulatory trajectories (eight trajecto-
ries for TVs and 14 trajectories for pellet data). Single 3-hidden
layer FF-ANN architecture was realized for each articulatory
information type (i.e., TVs and Pellet trajectories) and for
each feature type (MFCC or AP). The number of neurons in
each hidden layer was optimized by analyzing the RMSE from
the validation set. During the optimization stage we observed
that the performance of the articulatory trajectory estimation
improved as the number of hidden layers was increased. It
may be the case that additional hidden layers incorporated
additional nonlinear activation functions into the system, which
increased the potential of the architecture to cope with the high
nonlinearity inherent in a speech-inversion process. However
the number of hidden layers was confined to three because 1)
the error surface becomes more complex (with many spurious
minima) as the number of hidden layers are increased, thereby
increasing the probability that the optimization process finds a
local minimum and 2) increasing the number of hidden layers
increases the training time as well as the network complexity.
The optimal ANN architectures for the MFCCs and APs

were found to be 150-100-150 and 250-300-250,3 where the
numbers represent the number of neurons in each of the three
hidden layers. The 3-hidden layer FF-ANNs were trained with
a target epoch of 5000 and the estimated trajectories were pro-
cessed with a Kalman smoother. Post processing with Kalman
smoothing decreased the RMSE on an average by 9%.

Table III shows the and PPMC of all the
TVs and Pellet trajectories from the three approaches discussed
above. Note that lower RMSE and higher PPMC indicate better
performance of the estimation. Table III shows that overall, the
3-hidden layer FF-ANN offered both lower RMSE and higher
PPMC in both TV and pellet estimation tasks compared to the
TMDN and 1-hidden layer ANN. Some of the TVs involve
articulator movements that should be observed in particular
pellet trajectories, whereas the others are not comparable to the
pellet data at all. For example, the TV GLO represents the vi-
bration of the vocal folds thereby distinguishing voiced regions
from unvoiced ones. There is no such information present in
the pellet trajectories as it is almost impossible to insert pellet
transducers within the vocal chords. The TV-pellet sets that are
closely related to one another are as follows: ;

, , and
. Table IV lists the obtained

PPMC for the related TV and pellet trajectory estimates from
the 3-hidden layer FF-ANN when MFCCs are used as the
acoustic features.

There are several important observations from Table III:
1) overall the TV estimates offered better PPMC coefficients
and mean normalized rms error ( ) than the
pellet trajectories, 2) TMDN always showed improvement over
the 1-hidden layer ANN model having the same number of
neurons with linear activation function, and 3) the 3-hidden
layer FF-ANN with nonlinear activation showed overall the
best performance.

Observations from Table III are further confirmed in Table IV,
which shows that for the best performing architecture, that is the
3-hidden layer ANN, the estimated TVs overall offered higher
PPMC coefficient as compared to the relevant pellet trajectory
estimates. It should be pointed out here that the average PPMC
for 3-hidden layer FF-ANN shown in Tables III and IV are not
the same, as Table III shows the average across all the TVs/pel-

3The optimal number of neurons in the hidden layers was found to be very
similar for TV and pellet estimation for a given acoustic feature; hence, we have
used the same configuration for both the types of speech inversion task.
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TABLE IV
COMPARISON OF PPMC BETWEEN RELEVANT ARTICULATORY PELLETS AND

TVS FOR 3-HIDDEN LAYER ANN USING MFCC

lets and Table IV shows the average across only the relevant
set of TVs/pellets as specified above. The results are indica-
tive of the fact that the TVs can be estimated more accurately
from the speech signal than the pellet trajectories. Two reasons
may explain this difference. First, according to [74], the TVs
specify acoustically salient features of the vocal tract area func-
tions more directly than the pellet information. Second, the TVs
(i.e., the constriction location and degree) are intrinsically rel-
ative measures, whereas the pellet trajectories provide arbitrary
flesh-point location information in the 2-D Cartesian coordinate
system and are required to go through normalization [95]. Since
the normalization process is sensitive to the nature of data, the
relative nature of the information is not effectively captured. It
should be noted, however, that such pellet-trajectory-associated
problems were not overly severe in our experiment because, un-
like the case of natural speech, there were no distortion in the
data (as the data was synthetically generated using TADA) intro-
duced by intra- and inter-speaker variability. Finally, note that
better performance of TVs does not seem to hold for the tongue
body TVs. This can be possibly attributed to the different roles
played by the tongue body in speech. Tongue body TVs are con-
trolled primarily for vowels which do not usually involve very
narrow constrictions in the vocal tract (although velar conso-
nants (e.g., /k/ and /g/) do employ it). It can thus be said that TVs
are superior for representing articulations with narrow constric-
tions (consonants), since such constrictions will have a dispro-
portionate influence on the acoustics [105]. For example, TB
constriction for a coproduced vowel will produce little modu-
lation of the acoustics of stop closure or fricative noise, while
consonantal constriction will have a very large influence, de-
termining if there is silence or turbulence. Also note that our
main goal in retrieving articulatory information is to incorporate
that information for the purpose of articulatory gesture estima-
tion. Since articulatory gestures are action units that inherently
define constriction location and degree along the vocal tract, it
can be surmised that the TVs would be more appropriate inter-
mediate entities between acoustic observations and articulatory
gestures rather than flesh-point pellet trajectories. Thus, even if
pellet-trajectories are recovered more accurately than the TVs
(which is not found to be the case here), they could not be ex-
pected to perform as good as the TVs in the estimation of artic-
ulatory gestures.

Fig. 9. Hierarchical �-SVR architecture for generating the TVs.

B. TV Estimation: Additional Details

In this section, we will provide a more detailed analysis of
the TV estimation processes. Apart from the machine learning
approaches explored in the last section, we will examine SVR,
AR-ANN and finally DSL for TV estimation and then compare
their performance with that of the MDN and FF-ANN architec-
tures presented in last section.

1) Hierarchical SVR: We have previously proposed [77] a
nonlinear regression using a support vector regression (SVR)
framework for TV estimation using APs as the acoustic feature.
In the current work, we analyze the SVR performance for both
MFCCs and APs and contextualize them as stated in Section II.
Separate SVR models with RBF kernel were trained for each
TV, where the set of APs4 for each model was selected based
upon their relevance. We observed that certain TVs (TTCL,
TBCL, TTCD, and TBCD) are known to be functionally de-
pendent upon other TVs, while the remaining TVs (GLO, VEL,
LA, and LP) are relatively independent and can be obtained di-
rectly from the acoustic features. This dependency is used to
create the hierarchical architecture shown in Fig. 9. From the
results of the validation set the optimal value of was found to
be 1.5 and was set equal to based on [112], [118], where

dimension of the input feature set.
2) AR-ANN: The estimated TVs from TMDN, FF-ANN,

and SVRs were found to be fairly noisy, which necessitated
the use of Kalman smoother postprocessing. As articulatory
movements are inherently low pass in nature, maintaining
smoother trajectories is a desired task in speech inversion task.
Using an autoregressive architecture is suitable for such an
application, as the feedback loop helps to retain the smoothness
of the estimated trajectories. Individual AR-ANN models
were trained separately for each of the TVs. A 2-hidden layer
AR-ANN model with tan-sigmoid activation, SCG training
(using 5000 epochs) with dynamic backpropagation was used.

4The number of pertinent APs for each TV is shown in [77]
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Fig. 10. PPMC for TV estimation from different architectures using MFCC.

The number of neurons in each hidden layer was optimized and
for all the models the number of neurons within each hidden
layer was confined within 25 to 200. A unit delay5 was used in
each of the AR-ANN architecture. The TV estimates from the
AR-ANNs were not noisy hence were not postprocessed with
the Kalman smoother.

3) DSL Architecture: A single DSL architecture was trained
for all the eight TV trajectories for each acoustic feature.
The forward models were created using single hidden-layer
FF-ANN and trained using SCG algorithm. The number of
neurons in the hidden layer was optimized using the rms error
over the validation set. The inverse models were built using
a 3-hidden-layer network and the number of neurons in each
layer was optimized using the rms error on the validation set.
The DSL models were trained using gradient descent learning
algorithm (with a variable learning rate), momentum learning
rule (momentum ) and mean squared predicted perfor-
mance error [55] with regularization as the optimization criteria
(regularization parameter ). The number of neurons
in the forward model was 350 and 400 and in the inverse
model were 150-100-150 and 250-300-250 for MFCC and AP,
respectively.

4) Comparison of TV Estimation Architectures and Their
Performance: The TV estimation results from TMDN,
3-hidden layer FF-ANN, SVR, AR-ANN, and DSL are shown
in Figs. 10–13 for both APs and MFCCs. It can be observed
from the plots that the 3-hidden layer FF-ANN architecture
overall offered superior performance over the other approaches,
closely followed by the DSL technique. For LA, DSL always
performed better than the 3-hidden layer FF-ANN. The worst
performance was observed from SVR and AR-ANN architec-
tures. The feedback loop in the AR-ANN architecture helps to
maintain the inherent smoothness of the articulatory trajectories
but at the same time can be a source of progressive error intro-
duction. If the AR-ANN model makes a significant error at any
time instant, that error gets fed back to the system, resulting in
progressive error in subsequent estimates. The TMDN results
though were not as good as the 3-hidden layer FF-ANN, but

5Multiple delays were also tested, but were not found to yield appreciable
improvement in performance.

Fig. 11. PPMC for TV estimation from different architectures using AP.

Fig. 12. Normalized RMSE for TV estimation from different architectures
using MFCC.

Fig. 13. Normalized RMSE for TV estimation from different architectures
using AP.

were much better most of the time than the SVR and AR-ANN
architectures.

Table V presents the RMSE and PPMC coefficients for all the
TVs, obtained from the 3-hidden layer FF-ANN architecture for
both the acoustic features. As noted from Table I, different TVs
have different measuring units and dynamic ranges; hence, ac-
cordingly the RMSE needs to be interpreted. For example GLO
and VEL have a very small dynamic range and hence very small
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TABLE V
RMSE AND PPMC FROM 3-HIDDEN LAYER FF-ANN

TABLE VI
PPMC FOR FF-ANNS WITH DIFFERENT NUMBER

OF HIDDEN LAYERS FOR MFCC

RMSE. On the contrary, TBCL and TTCL are measured in de-
grees and have a larger dynamic range than the others; hence,
their RMSE is in degrees and the values are larger than the
others.

Table V shows that the APs overall offered better accuracy for
GLO and VEL, whereas for the other TVs, the MFCCs provided
better results. The APs have specific parameters for detecting
voicing (e.g., periodic and aperiodic energies at different sub-
bands) and nasalization (ratio of the energy in BW [0 to 320 Hz]
and energy in BW [320 to half the sampling rate] measured in
dB). Thus, GLO and VEL are better captured using the APs.

The different architectures described in this paper targeted
different aspects of the speech inversion process. For example,
AR-ANN targeted the inherent smoothness (low-frequency na-
ture) of the TVs and the DSL and TMDN architecture were
designed to explicitly address the non-uniqueness involved in
speech inversion, whereas the 3-hidden layer FF-ANN targeted
the nonlinearity of the speech inversion task. The better perfor-
mance of the 3-hidden layer FF-ANN suggests that nonlinearity
is the most critical aspect of TV estimation from the speech
signal. The nonlinearity in the FF-ANNs is imparted by the
tan-sigmoid activations used in the hidden layers. We observed
that increasing the number of hidden layers in the FF-ANN
architecture resulted in an increase in the PPMC and simul-
taneous decrease in the RMSE, as shown in Table VI, where
the FF-ANN had eight output nodes (one for each TV). From
Table VI it can be seen that increasing the number of hidden
layers increased the PPMC consistently for all but LP.

From these observations, we reiterate Qin et al.’s [91] claim
that non-uniqueness may not be a critical problem for speech
inversion although their work was focused on pellet-trajec-
tory-based speech inversion. McGowan [74] pointed out that the
non-uniqueness problem with speech inversion is ameliorated
by the use of TVs as there may be one articulatory specification

Fig. 14. Actual and estimated TVs from ANN and ANN+Kalman using MFCC
as the acoustic feature.

(in terms of constriction degree and location) which can have
many different sets of articulatory location (in Cartesian coor-
dinates) that represent the same vocal tract constriction. Hence,
for TVs we can expect a further (if at all any) reduction in
non-uniqueness for the speech inversion task. It is well known
that speech to articulatory inversion is a primarily nonlinear
problem [95] and this fact could be the driving force behind
the success of the 3-hidden layer FF-ANN. The DSL approach
uses a similar architecture as the 3-hidden layer FF-ANN,
but its inability to match the performance of the latter can be
due to the inaccuracies in the forward model. As pointed out
before, the DSL topology is more like an analysis-by-synthesis
architecture, where the performance of synthesis part entirely
depends upon the accuracy of the forward model. To ensure
a highly accurate forward model, exhaustive data is typically
required to ensure the forward model has examples of all
possible pairs of articulatory data and acoustic observation.
However, in a real-world scenario such an exhaustive data
may not be always practical rendering the inaccuracy of the
forward model. An example of the predicted trajectories from
the 3-hidden layer FF-ANN for five different TVs (VEL, LA,
TBCL, TBCD, TTCL, and TTCD) is shown in Fig. 14, for
the synthetic utterance “a ground.” It can be seen that the raw
trajectories from the FF-ANN architecture are much noisier and
the Kalman-smoothing helped to reduce that noise efficiently.

V. CONCLUSION

We have demonstrated using a TADA generated dataset that
TV estimation can be done with overall better accuracy than
estimation of articulatory pellet trajectories. This result sug-
gests that TVs may be better candidates than pellet trajecto-
ries for articulatory feature-based ASR systems. Analysis of dif-
ferent approaches to TV estimation suggests that for the syn-
thetic dataset we used, nonlinearity is the governing factor rather
than non-uniqueness for speech inversion using TVs. We draw
this conclusion since the 3-hidden layer FF-ANN architecture,
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which models well the nonlinearity inherent in speech inver-
sion, offered much better accuracy over the other competing ap-
proaches. The 3-hidden layer FF-ANN is simpler to construct
and even simpler to execute when trained; hence, it would be an
ideal candidate for TV estimation in a conventional ASR system
or gesture-based ASR system. Currently, none of the natural
speech corpora contain TV information. If and/or when such
a database becomes available, similar analyses need to be per-
formed to validate the applicability of the FF-ANN architecture
for TV estimation.
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