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ABSTRACT 1 

The Federal Aviation Administration (FAA) and Eurocontrol publish metrics to evaluate flight 2 

horizontal en route inefficiency (HIE), which measures the excess distance flown with respect to 3 

the theoretical shortest distance route. Knowledge of the factors that drive variation in en route 4 

efficiency is, however, limited. This paper proposes an approach to relate HIE with convective 5 

weather, wind, Miles-In-Trail restrictions (MIT), Airspace Flow Programs (AFP), Monitor Alerts 6 

(MA), and Special Activity Airspace (SAA). Furthermore, we develop econometric models to 7 

quantify how these factors affect HIE based on a historical dataset with flights among 97 major 8 

US airport pairs in 2013. Our analysis is based on the concept of a synthetic nominal route, in our 9 

case a great circle route, whose features are time-dependent, and are assumed to affect HIE of a 10 

given flight even though its trajectory does not follow the great circle. In the models, we also 11 

consider the effects of airspace route structure by inclusion of airport-pair fixed effects, and a 12 

measure of flight distance that is sensitive to the efficient placement of terminal entry and exit 13 

points. The estimation results suggest that long-haul flights are in general more efficient than short-14 

haul flights, and inefficient terminal entry and exit points lead to greater HIE. The estimates 15 

confirm that inefficiency is greater when synthetic great circle routes have greater exposure to 16 

convective weather, unfavorable winds, MITs, SAAs, and long-delay AFPs. Finally, we find that 17 

MAs do not appear to have much direct impact on en route inefficiency. 18 

 19 

Keywords: En route inefficiency, convective weather, wind, Miles-In-Trail, Airspace Flow 20 

Program, Special Activity Airspace, Monitor Alert; Fixed effects model 21 
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1. INTRODUCTION 1 

In recent years, flight en route performance has received more attentions in the literature. In both 2 

US and Europe, it is evaluated by a simple metric termed as “horizontal en route inefficiency” 3 

(HIE), which is calculated based on the actual distance traveled and a benchmark distance between 4 

a 40 nautical-mile circular boundary around the departure airport (D40) and a 100 nautical-mile 5 

circular boundary around the arrival airport (A100). Equation 1 formulates the HIE, where A is the 6 

actual flown distance, and H is the benchmark distance termed as the “achieved distance” (1). 7 

While the achieved distance is highly correlated with the D40A100 great circle distance, it captures 8 

the effects of terminal exit and entry points and varies from flight to flight.  9 

 10 

𝐻𝐼𝐸 =
𝐴−𝐻

𝐻
        (1) 11 

 12 

Simple as it is, flight en route inefficiency is core to many fuel efficiency benefit assessments. 13 

Therefore, both the Federal Aviation Administration (FAA) and Eurocontrol employ the metric and 14 

publish joint annual report to compare and evaluate the overall performance in both regions. Ref. 15 

(2) reports that in 2013, the HIE was 2.91% and 2.71% for Europe and the US, respectively. With 16 

the implementation of free route airspace (FRA), Europe experienced continuous improvement of 17 

HIE between 2011 and 2014, however, this trend reversed in 2015. US HIE improved from 2008 18 

to 2012, but has been worsened since then. This has been linked to airports with increased traffic 19 

levels (LAX, SEA, DAL) (2). However, work on linking inefficiencies to specific causal reasons, 20 

a necessary step in developing strategies to improved performance, is limited. Accordingly, in this 21 

study, we will identify potential causal factors and the mechanisms by which they may contribute 22 

to HIE, propose metrics that quantify the exposure of individual flights to these factors, and, lastly, 23 

build econometric models to quantify the effects of different factors on HIE. 24 

 25 

The rest of the paper is organized as follows. In section 2, we first review literature that is related 26 

to en route inefficiency analysis, and then introduce the datasets used in the study. Section 3 27 

describes the methodology and algorithms of the paper. Section 4 presents the results and our 28 

analysis, and section 5 offers the conclusions. 29 

 30 

2. PRELIMINARIES 31 

2.1 Literature Review 32 

There is some previous literature analyzing correlations between different causal factors and flight 33 

en route inefficiency. Liu et al. (2017) examine the causal effects of weather, wind and Miles-In-34 

Trail (MIT) restrictions on en route inefficiency using the concept of nominal routes (3). In the 35 

paper, the authors select six airport pairs and build airport-pair specific models to quantify the 36 

contributions of different factors. The results vary across pairs but in general convective weather 37 

has the greatest contribution, followed by wind and miles-in-trail restrictions. However, the factors 38 

considered in that study together account for a small fraction of the total en route efficiency. In 39 

part, this is because the study considers factors that vary from flight to flight for a given airport 40 

pair. Therefore, the present study adopts a different approach: we estimate pooled cross-sectional 41 

models that are informed by HIE variation both within and between different airport pairs. This 42 

allows us to investigate factors whose variation is substantially between pairs rather than between 43 

flights within a pair, such as special activity airspace (SAA) and airspace flow programs. Moreover, 44 
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the methodology adopted here is more readily “scalable” so that much larger number of airport 1 

pairs can be incorporated into the analysis. 2 

 3 

One set of factors that affect HIE pertains to weather – including convective weather and winds. 4 

There is extensive literature on modeling flight trajectories in avoidance of convective weather. 5 

For example, McNally et al. (2012) and McNally et al. (2013) developed tools to automatically 6 

reroute flights to find more efficient routes around convective weather, which they termed 7 

“dynamic weather routes” (4), (5). Flights almost will always go around hazardous weather zones 8 

(see SWAP from (6)) and therefore increase their HIE. Additionally, a large body of literature 9 

focuses on optimizing trajectories with respect to wind – i.e. finding the wind optimal route (7), 10 

(8), (9). In many cases, a flight taking the great circle trajectory, which is the shortest path, will 11 

not be optimal when winds are taken into account. Therefore, a flight that is “inefficient” in terms 12 

of HIE flight may actually be more “efficient” in terms of fuel/flight time. 13 

 14 

Another important group of potential factors contributing to HIE is traffic management initiatives 15 

(TMIs), particularly those related to airspace. They have received far less attention in the open 16 

literature. One such initiative is Miles-In-Trail restrictions (MIT), which specify the minimal 17 

distance required between two consecutive aircrafts over a fix, airport, sector or route (6). MITs 18 

are a common tool that FAA uses to maintain a manageable flow into busy airspace. Ref. (10) 19 

reports that MIT restrictions did not have significant effects on airborne delay, but their effect on 20 

HIE has only been studied recently. Liu et al. (2017) reports that MITs have a statistically 21 

significant impact for certain pairs such as JFK to FLL (3). However, how and to what degree MIT 22 

may affect the traffic flow and flight inefficiency in a broader range of airport pairs need further 23 

exploration. A second example is Airspace Flow Programs (AFP), which identify constrained areas 24 

in the airspace and assign expected departure clearance times (EDCT) to flights entering the area. 25 

Flights can choose either stay in the AFP and accept the EDCT and its attendant ground delay, or 26 

reroute the flight out of AFP to get a longer route, or reroute to another AFP with lower expected 27 

delays. Tereshchenko and Hansen (2018) studied the airline decision making in response to the 28 

AFP with emphasis of relative trajectory costs. Though the authors conclude that flights usually 29 

avoid rerouting out of AFP, but such reroutes are common enough so that AFPs could affect en 30 

route inefficiency (11). Thirdly, Special Activity Airspace (SAA) defines 3D geometries in the 31 

NAS wherein limitations are imposed on aircraft operations at certain times, when the SAA is said 32 

to be “active.” SAAs include Special Use Airspace (SUA) such as Military Operational Areas 33 

(MOA), Restricted Areas (RA) and Air Traffic Control Assigned Areas (ATCAA). SAA activation 34 

and de-activation involves communication and negotiation between FAA and DoD, but lacks 35 

flexibility and automation (12). Krozel et al. (2008) designed tools to balance the usage of SAA 36 

between military and civilian operations. The authors point out that up to the publication date, the 37 

dispatchers must assume that aircraft will have to fly around all known SUAs regardless the active 38 

status and must be fueled to do so (13). Therefore, a system by which the military can activate 39 

SUAs based on its needs and civilian airspace users can use unused SUAs would be of great benefit. 40 

The data used in our study confirm that most flight trajectories deliberately avoid the SUA areas, 41 

even if they are not activated. Lastly, Monitor Alert (MA) is a tool that alerts sector personnel 42 

when the forecast flight demand exceeds Monitor Alert Parameter (MAP) value, which is an 43 

indicator of sector capacity. When the forecast demand, which is based on the number of flights 44 

that have already departed in a given time interval, exceeds  the MAP value, MA will be triggered 45 

as “red” alert; otherwise, it will be triggered as “yellow” alert.. Sector personnel receiving the alert 46 
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must evaluate the impact and take appropriate actions (14). Actions include but not limited to 1 

accepting traffic, splitting the sector, and requesting TMIs such as MIT and AFP. While not a TMI 2 

per se, MA’s may also affect HIE if flights are rerouted to avoid the red or yellow regions. 3 

 4 

2.2 Data Sources and Summary Statistics 5 

In this study, we combined eight historical datasets from different sources. The flight event dataset, 6 

which comes from the Traffic Flow Management System (TFMS) of the FAA, contain the flight 7 

level en route performance statistics including D40 – A100 actual flown distance and D40 – A100 8 

achieved distance. We obtained the data for the calendar year (CY) 2013 and derived the flight en 9 

route inefficiency. The full dataset includes around 6.5 million records, 87% of which are domestic 10 

flights. In this study, we limit our scope to flights among the US main 34 airports listed in the 2013 11 

US-Europe operational performance report, which accounts for around 47% of the total traffic with 12 

an average en route inefficiency of 3.41%. 13 

 14 

The flight tracks dataset, which also comes from the FAA TFMS, contains the 4D position – 15 

longitude (in degrees), latitude (in degrees), altitude (in 100 feet), and time (in seconds) – for each 16 

flight throughout its trip. The time resolution of the flight tracks is typically 1 minute. In this study, 17 

we first sampled 97 airport pairs based on the traffic volume in the flight event dataset and then 18 

queried into the TFMS to obtain all flight tracks among the selected pairs in CY2013. Figure 1 19 

shows the selected airport pairs. The red markers are selected airports, and the green curves are 20 

great circle routes connecting any two airports. After preprocessing all the flight tracks, we ended 21 

up with 436,830 flights in 2013. 22 

 23 

 24 

Figure 1 Selected airport pairs (direction not specified in the figure) 25 

We derived the convective weather data from the Quality Controlled Local Climatological Data 26 

(QCLCD). The dataset includes hourly summaries for different weather instances, such as 27 

thunderstorm, rain, hail, etc., at around 2,500 ground stations in the US. Each record is a vector of 28 

binary variables indicating whether there was a certain type of weather instance occurring at a 29 

specific time and location. We collected the weather data in CY2013. 30 

 31 

The wind dataset, which comes from the National Center for Atmospheric Research (NCAR), 32 

contains raster of southerly and westerly wind speeds at specific hours and grid points. To be more 33 

specific, the dataset records the wind speed four times a time – 00:00, 06:00, 12:00, 18:00 UTC – 34 

and each grid point is described as a tuple of (longitude, latitude, pressure altitude). The horizontal 35 

grid resolution is 2.5° × 2.5° , and there are 17 pressure levels ranging from 10 mbar (around 36 
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85,000 ft) to 1000 mbar (around 350 ft). For CY2013, we ended up with 1,460 raster files. 1 

 2 

The Miles-In-Trail (MIT), Airspace Flow Program (AFP), and Monitor Alert (MA) datasets all 3 

come from the National Traffic Management Log (NTML). The MIT data describe where, when, 4 

why and how the MIT restrictions were implemented. Fields of interest include: requesting facility 5 

(center), providing facility (center), NAS element (where the MIT was initiated), time and spacing 6 

parameters. The AFP dataset records, similar to MIT, when and where the AFP was initiated, and 7 

what the assigned flight delay and acceptance rate were. Interested readers may also refer to the 8 

AFP visualizer web tool developed by Estes (15). Since both MITs and AFPs are often modified, 9 

extended or cancelled after initiation, we excluded those MITs or AFPs that were cancelled before 10 

initiation, and merged those that were extended or modified from the initial plan. The monitor alert, 11 

while is a tool that reflects the projected demand in different sectors, was recorded in the MA 12 

dataset by the alert time, alert type and the corresponding actions. We collected all the three 13 

datasets for CY2013. 14 

 15 

Finally, the Special Activity Airspace (SAA) dataset comes from NASA Sherlock data warehouse. 16 

It contains the start/ stop time, facility, type and altitude restrictions of each activity. We merged 17 

the SAA dataset with the facility geometry file provided by FAA National Flight Data Center 18 

(NFDC) and excluded those SAAs with unknown geometries. 19 

 20 

3. METHODOLOGY  21 

Using the data sources described above, we create a pooled, cross-sectional data set of flights 22 

across 97 airport pairs that took place in the year 2013. Following (3), we characterize each flight 23 

by considering a nominal route rather than the actual flown trajectory. This is because one of the 24 

main sources of the flight inefficiency comes from reroute or detours to avoid adverse conditions. 25 

For example, a flight from LAX to JFK may take a long route crossing the Great Lakes because 26 

of unfavorable wind and weather conditions on the great circle route. In other words, it is the 27 

meteorological/ TMI condition on the most efficient route that “causes” the actual flight route.  In 28 

this paper, we consider a single nominal route for each airport pair. The routes used in this paper 29 

are synthetic 4D great circle trajectory (GCT), which is theoretically the “most” efficient route, in 30 

terms of HIE1, for each flight. As will be shown, by matching the synthetic GCT with features such 31 

as weather and MIT, we relate the flight HIE with different causal factors and provide an approach 32 

to quantifying how those factors impact HIE. 33 

 34 

3.1 Generating Synthetic 4D Great Circle Trajectories 35 

Generating 2D (longitude and latitude) great circle trajectory can be achieved by using spherical 36 

trigonometry and assuming the earth is an oblate ellipsoid. A realistic 4D great circle path, however, 37 

needs to satisfy the following two conditions: (a) it must have a reasonable altitude profile; (b) the 38 

time profile should not violate the basic law of kinematics. In this study, therefore, we first use 39 

WGS-84 ellipsoid and generate equally spaced waypoints. Then for each waypoint, we calculate 40 

the distances away from the origin and destination airports. Lastly, we use the historical flight 41 

trajectory dataset to approximate the altitude and time along the GCT by finding k-nearest 42 

neighbors based on the two distances. The full algorithm GCT-Generator is shown below.  43 

                                                 
1 This is true without considering the exit/ entry points of the terminal. 



6 
 

 1 

TABLE 1 GCT-Generator Algorithm 2 

Algorithm 1. GCT-Generator 

Inputs: 

a. Historical flight track dataset:  

    Track point: 𝑇𝑃𝑡
𝑖 = (𝑙𝑜𝑛𝑡

𝑖 , 𝑙𝑎𝑡𝑡
𝑖 , 𝑎𝑙𝑡𝑡

𝑖 , 𝑠𝑝𝑑𝑡
𝑖 ), with subscript 𝑡 are time and superscript 𝑖 as the 𝑖𝑡ℎ flight. 

    Trajectory dataset with M flights: 𝐹𝑇 = {[𝑇𝑃1
1, … , 𝑇𝑃𝑇1

1 ], … , [𝑇𝑃1
𝑀, … , 𝑇𝑃𝑇𝑀

𝑀 ]}. 

b. Coordinates of departure airport and arrival airport: (𝑙𝑜𝑛𝑑𝑒𝑝, 𝑙𝑎𝑡𝑑𝑒𝑝), (𝑙𝑜𝑛𝑎𝑟𝑟 , 𝑙𝑎𝑡𝑎𝑟𝑟). 

Parameters: 

a. Space interval for the synthetic great circle trajectory (default 10 nautical miles): 𝑑. 

b. Number of nearest neighbors (default 50): 𝐾. 

Outputs: 

The synthetic 4D great circle trajectory. 

Step 0: 

Random sample 75% of the total flights from 𝐹𝑇. Get 𝐹𝑇𝑠 

Step 1: 

Augment each 𝑇𝑃𝑡
𝑖 in 𝐹𝑇𝑠 by calculating the great circle distance away from the origin airport and destination 

airport, respectively. Get 𝑇𝑃𝑡
𝑖 = (𝑙𝑜𝑛𝑡

𝑖 , 𝑙𝑎𝑡𝑡
𝑖 , 𝑎𝑙𝑡𝑡

𝑖 , 𝑠𝑝𝑑𝑡
𝑖 , 𝑔𝑐𝑑𝑜𝑟𝑖,𝑡

𝑖 , 𝑔𝑐𝑑𝑑𝑒𝑠,𝑡
𝑖 ). 

Step 2: 

Build a 2D kd-tree based on [(𝑔𝑐𝑑𝑜𝑟𝑖,𝑡
𝑖 , 𝑔𝑐𝑑𝑑𝑒𝑠,𝑡

𝑖 )] for ∀𝑖, 𝑡. Get 𝑡𝑟𝑒𝑒𝐺𝐶. 

Step 3: 

Generate a 2D great circle trajectory given (𝑙𝑜𝑛𝑑𝑒𝑝, 𝑙𝑎𝑡𝑑𝑒𝑝), (𝑙𝑜𝑛𝑎𝑟𝑟 , 𝑙𝑎𝑡𝑎𝑟𝑟) and d. Calculate 𝑔𝑐𝑑𝑜𝑟𝑖,𝑡 and 

𝑔𝑐𝑑𝑑𝑒𝑠,𝑡 for every waypoint. Get 𝐺𝐶𝑇2𝐷 = {𝑊𝑃𝑖 = (𝑙𝑜𝑛𝑖 , 𝑙𝑎𝑡𝑖 , 𝑔𝑐𝑑𝑜𝑟𝑖,𝑖 , 𝑔𝑐𝑑𝑑𝑒𝑠,𝑖), ∀𝑖}. 

Step 5: 

Query the 𝑡𝑟𝑒𝑒𝐺𝐶 with the two distance measures from 𝐺𝐶𝑇2𝐷 and return 𝐾 nearest points for every waypoint 

along 𝐺𝐶𝑇2𝐷. Get 𝑄𝑁𝑃 = {𝑄𝑃𝑖 = (𝑇𝑃𝑖
1, 𝑇𝑃𝑖

2, … , 𝑇𝑃𝑖
50), ∀𝑖}. 

Step 6: 

For a waypoint 𝑊𝑃𝑖 in 𝐺𝐶𝑇2𝐷, weighted average the altitudes and speeds among the 50 queried points in 𝑄𝑃𝑖, 

where the weights are linearly inverse proportional to the distance. Get 𝐺𝐶𝑇2𝐷 = {𝑊𝑃𝑖 =

(𝑙𝑜𝑛𝑖 , 𝑙𝑎𝑡𝑖 , 𝑔𝑐𝑑𝑜𝑟𝑖,𝑖 , 𝑔𝑐𝑑𝑑𝑒𝑠,𝑖 , 𝑎𝑙𝑡𝑖 , 𝑠𝑝𝑑𝑖), ∀𝑖}. 

Step 7: 

For each 𝑊𝑃𝑖, use (𝑙𝑜𝑛𝑖 , 𝑙𝑎𝑡𝑖 , 𝑠𝑝𝑑𝑖) and (𝑙𝑜𝑛𝑖−1, 𝑙𝑎𝑡𝑖−1, 𝑠𝑝𝑑𝑖−1) to calculate the time interval 𝑡𝑖. 

Return 𝐺𝐶𝑇4𝐷 = {𝑊𝑃𝑖 = (𝑙𝑜𝑛𝑖 , 𝑙𝑎𝑡𝑖 , 𝑎𝑙𝑡𝑖 , 𝑡𝑖), ∀𝑖 ∈ [1, 𝑇]}. 

 3 

3.2 Matching 4 

To understand how weather, wind, TMIs and SAA affect flight en route inefficiency, we need to 5 

construct representative metrics for each flight based on the appropriate nominal route, which is 6 

the synthetic 4D great circle route described in Algorithm 1, but with the actual flight departure 7 

time. In other words, we want to characterize the conditions a given flight would have encountered 8 

if it had flown the nominal route. The detailed matching algorithms are introduced in the sections 9 

below. 10 

3.2.1 Matching with convective weather and wind 11 

Though convective weather and wind data come from different sources, their data structure is 12 

similar. Both can be stored in a fixed-dimension array, where the rows and columns are 13 

respectively the temporal and spatial indices, and planes are the fields of the dataset. To be more 14 

specific, the temporal indices for the weather dataset can be represented as the number of hours 15 
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elapsed from a base time, e.g., 01/01/2013 01:00 will have the temporal index of 1 with respect to 1 

the base time 01/01/2013 00:00, therefore, we have 365 × 24 = 8,760 rows in the weather array 2 

for the year 2013. Similarly, the wind array has 1,460 rows since wind data are stored every 6 3 

hours. The spatial indices are the location of the “reference” points, which are the fixed locations 4 

in the airspace. For the weather data, they are ground stations; for the wind data, they are 3D grid 5 

points. As a result, there are 1,763 and 17 × 435 = 7395 columns in the weather and wind array, 6 

respectively. Since the weather dataset has seven different weather types and the wind dataset has 7 

two wind speeds (southerly and westerly), the number of planes is respectively 7 and 2. Lastly, the 8 

elements in the array are the features we need to match with. As will be shown later, storing data 9 

as fixed-dimension arrays greatly boosts the matching procedure by making tree-based search 10 

possible. 11 

 12 

Matching a trajectory with a numeric array can be achieved simply by greedily searching the rows 13 

and columns and find the closest element(s) for every track point. Realizing that both the spatial 14 

(columns) and temporal (rows) dimensions of the weather/ wind array are fixed, we can simply 15 

build k-d trees to further structure the datasets, and batch query the trees to find the nearest 16 

neighbors for different track points. The algorithms are described in TABLE 2. 17 

 18 

TABLE 2 Matching with Fixed-Dimension Array 19 

Algorithm 2. Matching with fixed-dimension array 

Inputs: 

a. Synthetic 4D great circle trajectories: 𝐺𝐶𝑇4𝐷 = {𝑊𝑃𝑖 = (𝑙𝑜𝑛𝑖 , 𝑙𝑎𝑡𝑖 , 𝑎𝑙𝑡𝑖 , 𝑡𝑖), ∀𝑖 ∈ [1, 𝑇]}. 

b. Flight event dataset: 𝐹𝐸 = {[𝐷𝑒𝑝𝑇𝑖𝑚𝑒𝑖 , 𝐴𝑐ℎ𝐷𝑖𝑠𝑡𝑖 , 𝐼𝑛𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦𝑖], ∀𝑖 ∈ [1, 𝑁]}. 

c. Fixed-dimension array with features: 𝐹𝐷𝑇. 

Parameters: 

a. Base time (default 01/01/2013 00:00:00 UTC): 𝑏𝑎𝑠𝑒𝑇. 

Outputs: 

Matched feature vectors. 

Step 0: 

Convert all geographic coordinates from (𝑙𝑜𝑛, 𝑙𝑎𝑡, 𝑎𝑙𝑡) to Earth-centered rotational coordinates (𝑥, 𝑦, 𝑧). 

Step 1: 

Construct great circle trajectories for all flights in the 𝐹𝐸  data by adding to the temporal dimension the 

difference between departure time 𝐷𝑒𝑝𝑇𝑖𝑚𝑒 and base time 𝑏𝑎𝑠𝑒𝑇, while keeping the spatial dimension fixed. 

Get 𝐹𝐺𝐶𝑇 = {[𝑊𝑃𝑖
1, ∀𝑖], … , [𝑊𝑃𝑗

𝑁, ∀𝑗]}, where 𝑊𝑃𝑖
𝑘 = (𝑥𝑖

𝑘 , 𝑦𝑖
𝑘 , 𝑧𝑖

𝑘, 𝑒𝑙𝑎𝑝𝑇𝑖
𝑘) is the 𝑖𝑡ℎ waypoint of the 𝑘𝑡ℎ 

flight. 

Step 2: 

Construct two kd-trees for spatial (𝑠_𝑡𝑟𝑒𝑒) and temporal b (𝑡_𝑡𝑟𝑒𝑒) dimensions, repectively. The spatial tree 

is built based on the location of the reference points (𝑥, 𝑦, 𝑧), and the temporal tree is built based on the 

elapsed time from a base time 𝑏𝑎𝑠𝑒𝑇. 

Step 3: 

Query1 𝑠_𝑡𝑟𝑒𝑒 with the converted coordinates (𝑥, 𝑦, 𝑧) from 𝐹𝐺𝐶𝑇, and 𝑡_𝑡𝑟𝑒𝑒 with the elapsed time 𝑒𝑙𝑎𝑝𝑇 

from 𝐹𝐺𝐶𝑇. Get the tuple of the nearest spatial-temporal indices and return the corresponding elements from 

the feature array 𝐹𝐷𝑇. 

Step 4: 

If 𝐹𝐷𝑇  is the wind array, then for each waypoint 𝑊𝑃𝑡
𝑘  on flight 𝑘 , we used the azimuth 𝜃  and matched 

southerly wind speed 𝑢𝑡
𝑘 and westerly wind speed 𝑣𝑡

𝑘 to calculate the headwind/ tailwind speed by 𝐻𝑇𝑊𝑡
𝑘 =

𝑢𝑡
𝑘𝑐𝑜𝑠𝜃 + 𝑣𝑡

𝑘𝑠𝑖𝑛𝜃. Calculate the average 𝐻𝑇𝑊𝑡
𝑘 along the flight. 

For flight 𝑘 , use the ground speed 𝑠𝑝𝑑𝑡
𝑘  and 𝐻𝑇𝑊𝑡

𝑘   to calculate the airspeed, then calculate the distance 
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traveled with respect to the air (equivalent still air distance) 𝑊𝐷𝑘. 

Step 5: 

If 𝐹𝐷𝑇  is the weather array, then for each waypoint 𝑊𝑃𝑡
𝑘  on flight 𝑘 , we get a list of matched weather 

variables 𝑀𝐼𝑡,𝑚
𝑘  , where 𝑚  represents one of the weather phenomenon, and a list of distances away from 

matched weather stations (𝑀𝑆𝐷𝑡
𝑘) to 𝑊𝑃𝑡

𝑘. 

Compute the weighted average 𝑀𝐼𝑡,𝑚
𝑘  and get weather scalar 𝑀𝑊𝑡,𝑚

𝑘  for waypoint 𝑊𝑃𝑡
𝑘, where the weights 

are inversely linear proportional to the elements in 𝑀𝑆𝐷𝑡
𝑘. Average 𝑀𝑊𝑡,𝑚

𝑘  along all waypoints for flight 𝑘 

and return this metric. 
Note: 1 
1. For wind array, we performed nearest neighbor query, i.e., only return indices with the nearest distance; for weather array, we 2 
performed radius query, i.e., return all indices within a circle with radius r. 3 
 4 

3.2.2 Matching with TMIs and SAA 5 

MIT, AFP, MA and SAA all have similar structures, including a start time, a stop time, a location, 6 

and how it would affect the traffic. To be more specific, a typical MIT is recorded as 7 

[𝑠𝑡, 𝑒𝑡, 𝑟𝑒𝑞𝑓𝑎𝑐, 𝑝𝑟𝑜𝑣𝑓𝑎𝑐, 𝑛𝑎𝑠_𝑒𝑙𝑒𝑚, 𝑎𝑙𝑡, 𝑣𝑎𝑙𝑢𝑒] , which can be interpreted as facility 𝑟𝑒𝑞𝑓𝑎𝑐 8 

(e.g., ZLA) requests a MIT to meter traffic into that facility, while facility 𝑝𝑟𝑜𝑣𝑓𝑎𝑐 (e.g., ZOA) 9 

implements a MIT restriction that is enforced at the NAS element (e.g., BTY) with value 𝑣𝑎𝑙𝑢𝑒 10 

(e.g., 15 miles) and altitude range specified by 𝑎𝑙𝑡 from time 𝑠𝑡 to time 𝑒𝑡. AFP, MA and SAA, 11 

similarly, can be represented as [𝑠𝑡, 𝑒𝑡, 𝑓𝑎𝑐𝑖𝑙𝑖𝑡𝑦, 𝑎𝑙𝑡, 𝑣𝑎𝑙𝑢𝑒] , where 𝑣𝑎𝑙𝑢𝑒  for AFP includes 12 

average assigned delay and average acceptance rate; 𝑣𝑎𝑙𝑢𝑒 for MA is the alert type (red or yellow); 13 

and 𝑣𝑎𝑙𝑢𝑒 for SAA is the SUA type. To match with a TMI or SAA, a flight trajectory must satisfy 14 

the following condition: (a) it must crosses the corresponding facilities in a correct order, for 15 

example, a flight could match a MIT if it first crosses 𝑝𝑟𝑜𝑣𝑓𝑎𝑐, and then 𝑟𝑒𝑞𝑓𝑎𝑐 and 𝑛𝑎𝑠_𝑒𝑙𝑒𝑚; 16 

(b) the crossing time must within the period of 𝑠𝑡 and 𝑒𝑡; (c) the crossing altitude must satisfy 𝑎𝑙𝑡 17 

restrictions. TABLE 3 summarize the general matching framework. 18 

 19 

TABLE 3 Matching with TMI/SAA 20 

Algorithm 3. Matching with TMI/ SAA 

Inputs: 

a. Synthetic 4D great circle trajectories: 𝐺𝐶𝑇4𝐷 = {𝑊𝑃𝑖 = (𝑙𝑜𝑛𝑖 , 𝑙𝑎𝑡𝑖 , 𝑎𝑙𝑡𝑖 , 𝑡𝑖), ∀𝑖 ∈ [1, 𝑇]}. 

b. Flight event dataset: 𝐹𝐸 = {[𝐷𝑒𝑝𝑇𝑖𝑚𝑒𝑖 , 𝐴𝑐ℎ𝐷𝑖𝑠𝑡𝑖 , 𝐼𝑛𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦𝑖], ∀𝑖 ∈ [1, 𝑁]}. 

c. TMI (SAA) dataset: 𝑇𝑆𝐷 = {[𝑠𝑡𝑖 , 𝑒𝑡𝑖 , 𝑓𝑎𝑐𝑖𝑙𝑖𝑡𝑦𝑖 , 𝑎𝑙𝑡𝑖 , 𝑣𝑎𝑙𝑢𝑒𝑖]} 

Parameters: 

a. Buffer altitude (default 1000 ft): 𝐵𝑎𝑙𝑡. 

b. Buffer NAS element radius (only applicable for MIT, default 0.5°): 𝐵𝑛𝑎𝑠. 

Outputs: 

Matched feature vectors. 

Step 0: 

Construct great circle trajectories for all flights in the 𝐹𝐸  data by adding to the temporal dimension the 

difference between departure time 𝐷𝑒𝑝𝑇𝑖𝑚𝑒 and base time 𝑏𝑎𝑠𝑒𝑇, while keeping the spatial dimension fixed. 

Get 𝐹𝐺𝐶𝑇 = {[𝑊𝑃𝑖
1, ∀𝑖], … , [𝑊𝑃𝑗

𝑁, ∀𝑗]}, where 𝑊𝑃𝑖
𝑘 = (𝑙𝑜𝑛𝑖

𝑘, 𝑙𝑎𝑡𝑖
𝑘, 𝑎𝑙𝑡, 𝑒𝑙𝑎𝑝𝑇𝑖

𝑘) is the 𝑖𝑡ℎ waypoint of the 

𝑘𝑡ℎ flight. 

Step 1: 

Filter 𝑇𝑆𝐷 whose 𝑒𝑡 is before the departure time 𝐷𝑒𝑝𝑇𝑖𝑚𝑒𝑖 and 𝑠𝑡 is after the arrival time of flight 𝑖. The 

remaining 𝑇𝑆𝐷𝑓𝑖𝑙𝑡𝑒𝑟 are retained as a candidate. 

Step 2: 
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Intersect flight 𝑖’s great circle trajectory 𝐹𝐺𝐶𝑇𝑖 with every candidate𝑇𝑆𝐷𝑓𝑖𝑙𝑡𝑒𝑟.  

If 𝑇𝑆𝐷  is MIT, then if 𝐹𝐺𝐶𝑇𝑖  intersects the 𝑀𝐼𝑇𝑖 ’s influencing area2, 𝑟𝑒𝑞𝑓𝑎𝑐𝑖  and 𝑝𝑟𝑜𝑣𝑓𝑎𝑐𝑖  in a correct 

order, and the time of intersecting with influencing area is within [𝑠𝑡𝑖 , 𝑒𝑡𝑖] , then go to Step 3, otherwise 

discards 𝑀𝐼𝑇𝑖. 

Otherwise, if 𝐹𝐺𝐶𝑇𝑖 intersects the 𝑓𝑎𝑐𝑖𝑙𝑖𝑡𝑦, and the time of intersecting is within [𝑠𝑡𝑖 , 𝑒𝑡𝑖], then go to Step 3, 

otherwise discards 𝑇𝑆𝐷𝑖. 

Step 3: 

If the altitude(s) of the intersecting waypoint(s) is within the altitude restriction 𝑎𝑙𝑡 ± 𝐵𝑎𝑙𝑡
3, add the records 

𝑇𝑆𝐷𝑖 to the matching list, otherwise discards 𝑇𝑆𝐷𝑖. 

Step 4: 

Count the number of matched TMIs/ SAA as 𝐶𝑜𝑢𝑛𝑡. 

If 𝑇𝑆𝐷  is MIT, then calculate average and maximal of the matched MIT value, MIT duration and MIT 

stringencies1. 

If 𝑇𝑆𝐷 is AFP, then calculate average and maximal of the matched average AFP assigned delay, maximal AFP 

assigned delay, and average AFP acceptance rate4. 

If 𝑇𝑆𝐷 is MA or SAA, then calculate the average/max traverse time within the alert/SUA facility. 

Return 𝐶𝑜𝑢𝑛𝑡 and other calculated statistics. 
Note: 1 
1. MIT stringency is defined as the product of MIT value and MIT duration 2 
2. If the NAS element is a fix, then the influencing area is a circle of radius 𝐵𝑛𝑎𝑠 around the fix. If the NAS element is a jet route, 3 
then the influencing area is swath centered on the jet route with overall width of 𝐵𝑛𝑎𝑠. If the NAS element is a center/TRACON, 4 
then the influencing area is the polygon itself. 5 
3. If 𝑎𝑙𝑡 is already specified as a range (e.g., ceiling and floor), then we don’t add the 𝐵𝑎𝑙𝑡 to 𝑎𝑙𝑡. 6 
4. If a flight does not cross any AFPs, we set the AFP acceptance rate to be 999/hr. 7 
 8 

Through Algorithms 2 and 3, we construct a panel data set within which each flight has a list of 9 

explanatory variables in the form of 𝑋𝑖,𝑗 = [𝑤𝑒𝑎𝑡ℎ𝑒𝑟𝑖, 𝑤𝑖𝑛𝑑𝑖 , 𝑀𝐼𝑇𝑖, … , 𝑂𝐷𝑖𝑗] , where index 𝑖 10 

indicates the 𝑖𝑡ℎ  flight, and index 𝑗  indicates the 𝑗𝑡ℎ  airport pair. The description of the full 11 

explanatory variables is listed in TABLE 4. 12 

 13 

TABLE 4 Summary Statistics of All Variables 14 

Notation Description Min Max Mean 

InEff Flight en route inefficiency (in percentage) 0.0021 402.74 3.22 

TS Thunderstorm exposure (in percentage) 0.00 7.40 0.40 

Rain Rain exposure (in percentage) 0.00 20.60 2.37 

Squall Squall exposure (in percentage) 0.00 2.34 0.0027 

Ice Ice exposure (in percentage) 0.00 2.44 0.0043 

Precipitation Precipitation exposure (in percentage) 0.00 2.30 0.0055 

Shower Shower exposure (in percentage) 0.00 1.28 0.0072 

Hail Hail exposure (in percentage) 0.00 0.82 0.00027 

AvgWindSpd Average wind speed (positive if tailwind and negative if 

headwind) along the great circle route (in 100 m/s) 

-0.39 0.39 0.0095 

WindDist Distance traveled with respect to air (equivalent still air 

distance, in 1000 nmi) 

-0.29 0.23 -0.0050 

NumMIT Number of MIT crossed 0 13 0.32 

MaxMITSTR Maximal MIT stringency among all crossed MITs (in 

100 𝑚𝑖𝑙𝑒 ⋅ ℎ𝑟) 

0.00 9.83 0.18 

NumAFP Number of AFP crossed 0 2 0.02 

MaxAFPDly Maximal AFP assigned delay among all crossed AFP (in hours) 0 0.03 0.0002 

MaxAFPArr Maximal AFP acceptance rate among all crossed AFP (in 100 0 1.76* 0.013* 
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per hour) 

NumSAA Number of SAA crossed 0 9 0.57 

MaxSAAT Maximal transverse time within crossed SAA (in hours) 0 0.46 0.025 

NumMARed Number of red MA crossed 0 8 0.10 

NumMAYel Number of yellow MA crossed 0 5 0.013 

MaxMAT Maximal transverse time within crossed MA (in hours) 0 1.29 0.021 

AchDist Achieved distance (in 100 nmi) 0.56 26.64 6.91 
Note: * These are respectively the “true” maximal and average AFP acceptance rate after excluding all records with rate of 999/hr. 1 
 2 

3.3 Multiple Regression 3 

We estimate linear models to investigate how meteorological conditions, TMIs and SAA on the 4 

great circle route affect flight HIE. In the regression model, the dependent variable is the flight en 5 

route inefficiency, and there are five categories of explanatory variables. The first category 6 

includes weather-related variables, such as thunderstorm, rain, ice and squall. Although there are 7 

seven types of weather events in our dataset, most of these occur only at low altitude and thus are 8 

unlikely to affect the en route phase of a flight. Therefore, we only include thunderstorm and squall 9 

events in the model specification. Since a flight may need to adjust its route to avoid the convective 10 

weather, we expect these variables to have positive effects on en route inefficiency. The second 11 

category includes wind-related variables – average tailwind speed (negative if headwind) and 12 

equivalent still air distance. Since flights in general favor strong tailwind, we expect higher 13 

tailwind speed to decrease and greater equivalent still air distance to increase HIE. The third 14 

category includes airport pair fixed effects; we fit the model with airport-pair specific intercepts 15 

and expect flights between pairs that are more inefficient (e.g., short haul flights) will have larger 16 

positive effects.  The fourth category contains the TMIs and SAA. Like weather, we expect they 17 

will have positive effects to inefficiency. Finally, we include the achieved distance of each flight. 18 

When airport pair fixed effects are controlled, this variable mainly captures the effect of inefficient 19 

terminal entry and exit points and we expect it to have a positive impact on HIE. The model 20 

specification can be written as Equation 2, where index 𝑖  represents the 𝑖𝑡ℎ  flight, and index 𝑗 21 

represents the 𝑗𝑡ℎ airport pair. 22 

 23 

100 ⋅ 𝐼𝑛𝐸𝑓𝑓𝑖,𝑗 = 𝛽𝑗 + 𝛽1 ⋅ 𝑇𝑆𝑖 + 𝛽2 ⋅ 𝑆𝑞𝑢𝑎𝑙𝑙𝑖 + 𝛽3 ⋅ 𝐴𝑣𝑔𝑊𝑖𝑛𝑑𝑆𝑝𝑑𝑖 + 𝛽4 ⋅ 𝑊𝑖𝑛𝑑𝐷𝑖𝑠𝑡𝑖 + 𝛽524 

⋅ 𝑁𝑢𝑚𝑀𝐼𝑇𝑖 + 𝛽6 ⋅ 𝑀𝑎𝑥𝑀𝐼𝑇𝑆𝑇𝑅𝑖 + 𝛽7 ⋅ 𝑁𝑢𝑚𝐴𝐹𝑃𝑖 + 𝛽8 ⋅ 𝑀𝑎𝑥𝐴𝐹𝑃𝐷𝑙𝑦𝑖 + 𝛽925 

⋅ 𝑀𝑎𝑥𝐴𝐹𝑃𝐴𝑟𝑟𝑖 + 𝛽10 ⋅ 𝑁𝑢𝑚𝑆𝐴𝐴𝑖 + 𝛽11 ⋅ 𝑀𝑎𝑥𝑆𝐴𝐴𝑇𝑖 + 𝛽12 ⋅ 𝑁𝑢𝑚𝑀𝐴𝑅𝑒𝑑𝑖26 

+ 𝛽13 ⋅ 𝑁𝑢𝑚𝑀𝐴𝑌𝑒𝑙𝑖 + 𝛽14 ⋅ 𝑀𝑎𝑥𝑀𝐴𝑇𝑖 + 𝛽15 ⋅ 𝐴𝑐ℎ𝐷𝑖𝑠𝑡𝑖 27 

         (2) 28 

 29 

To appropriately estimate the model, we must take into account the heteroskedasticity across 30 

different airport pairs. To verify such effect, we use Breusch-Pagan test and the results reject the 31 

null hypothesis of homoskedasticity against the alternative that the residual variances depend on 32 

the explanatory variables. Moreover, we expect autocorrelation for flights departing at similar 33 

times between the same airport pairs, since they may experience similar meteorological conditions 34 

or TMIs throughout the flights. We use the Wooldridge test and the results reject the null that there 35 

is no autocorrelation. Therefore, we estimate the final model using ordinary least squares (OLS) 36 

with Newey-West standard errors with a maximal lag of 2. 37 

 38 
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4. Results 1 

To save space, TABLE 5 only reports the estimates of factors that interest us the most – weather, 2 

wind, TMIs and SAA – for four linear models. Model I, which we term “full model”, includes all 3 

variables of interest and airport-pair fixed effects and is presented in the first column of TABLE 5. 4 

Model II, in which variables (except fixed effect variables) that are not significant at the 10% level 5 

are omitted, is presented in the second column. Model III, which eliminates the achieved distance 6 

effect, and Model IV, which eliminates the airport-pair fixed effects but includes a generic intercept 7 

and achieved distance, are presented in the last two columns of TABLE 5.  8 

 9 

The vast majority of the estimates for the three reduced models (model II – model IV) are 10 

significant with expected signs. First of all, the estimates of thunderstorm confirm that convective 11 

weather along the great circle route increases the en route inefficiency. However, Model II and III 12 

have far smaller magnitude comparing with Model IV due to the inclusion of the airport-pair fixed 13 

effects – some direct routes inherently have more convective weather activities and therefore, 14 

much of the weather effects are absorbed by the airport-pair fixed effects. Secondly, tailwind speed 15 

on the great circle route seems to reduce inefficiency. When the airport-pair fixed effects are 16 

controlled, the negative estimates of average wind speed and positive estimates of equivalent still 17 

air distance imply that favorable tailwind conditions on the great circle route reduce flight 18 

inefficiency. This can be explained by the fact that flights prefer routes with higher tailwind speed, 19 

and therefore, if the great circle route has strong tailwind, flights gravitate toward routes close to 20 

the great circle, decreasing en route inefficiency. However, models in this study do not explicitly 21 

represent the mechanism of how winds affect the route choice; interested readers may refer to (3) 22 

and (16) for more discussions on winds and flight route choice. Thirdly, the estimates of MIT, AFP 23 

and SAA indicate that flights whose great circle routes have stronger MIT restrictions, AFP delays, 24 

and traverse time in the SUA areas are more inefficient than the others. We also notice that the 25 

estimates for all Monitor Alert associated variables are not significant. This is likely because an 26 

MA does not, per se, affect air traffic; rather it may result in a TMI such as an MIT or AFP, the 27 

effects of which are already incorporated in the model. Lastly, the estimates for achieved distance 28 

vary drastically depending on whether airport-pair fixed effects are included in the model. When 29 

airport-pair fixed effects are included (as in Model II), the estimate of achieved distance mainly 30 

derives from variation among flights within the same airport pairs; however, when there are no 31 

airport-pair fixed effects (as in Model IV), the estimate mostly captures the cross-sectional 32 

variation in achieved distance. Accordingly, the negative coefficient in Model IV indicates that 33 

long-haul flights tend to be more efficient; while the positive estimate in Model II indicates that 34 

for any particular airport pair, flights with longer achieved distance are more inefficient. Variation 35 

in achieved distance within a particular airport pair reflects variation in the efficiency of the entry 36 

and exit points; a higher achieved distance means these points are less efficient. The results in 37 

Models I and II therefore imply that flights with less efficient entry and exit points are also less 38 

efficient in the en route phase of flight. Figure 3, which further confirms the cross-sectional effects, 39 

presents the relationships between achieved distance and actual en route inefficiency, where scatter 40 

points with the same color represent flights between the same airport pair.  41 

 42 

Figure 2 shows the airport-pair specific intercepts for Model II (red bars) and Model III (grey bars), 43 

where the x-axis shows the airport pairs ordered by the average achieved distance (left is shorter). 44 

Notice that Model II includes the variable 𝐴𝑐ℎ𝐷𝑖𝑠𝑡 , which varies marginally across flights 45 

between the same airport pair but differs drastically across different airport pairs. Therefore, in 46 
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Figure 2, we adjust Model II’s airport-pair fixed effects by adding the product of coefficients 1 

before 𝐴𝑐ℎ𝐷𝑖𝑠𝑡 and the average achieved distance for each airport pair. The estimates for both 2 

models are largely consistent with a decreasing trend to the right-hand side of the x-axis, indicating 3 

long-haul flights such as BOS to SFO are in general more efficient. 4 

 5 

TABLE 5 Estimation Results 6 

Variable 

Models 

Est. / (Std.) 

Model I Model II Model III Model IV 

constant 
- - - 

3.410*** 

(0.027) 

TS 0.103*** 

(0.023) 

0.109*** 

(0.021) 

0.253*** 

(0.030) 

0.819*** 

(0.030) 

Squall 1.823 
(1.377) - - - 

AvgWindSpd -1.877*** 

(0.441) 

-1.880*** 

(0.433) 

-1.945*** 

(0.596) 

-0.168 
(0.113) 

WindDist 6.775*** 

(1.415) 

6.817*** 

(1.390) 

6.247*** 

(1.872) 

1.195*** 

(0.170) 

NumMIT 0.148*** 

(0.016) 

0.148*** 

(0.016) 

0.314*** 

(0.027) 

0.185*** 

(0.026) 

MaxMITSTR 0.110*** 

(0.024) 

0.110*** 

(0.024) 

0.239*** 

(0.038) 

0.244*** 

(0.040) 

NumAFP 0.232 

(2.004) 

0.394*** 

(0.112) 

1.078*** 

(0.224) 

1.121*** 

(0.230) 

MaxAFPDly 9.60 
(14.393) - 

103.620*** 

(17.778) 

112.215*** 

(18.050) 

MaxAFPArr -0.005 
(0.212) - - - 

NumSAA -0.003 
(0.010) 

- - - 

MaxSAAT 2.666*** 

(0.271) 

2.587*** 

(0.183) 

2.816*** 

(0.242) 

2.981*** 

(0.134) 

NumMARed -0.025 
(0.018) - - - 

NumMAYel -0.022 
(0.028) - - - 

MaxMAT 0.086 
(0.091) - - - 

AchDist 53.9478*** 

(1.871) 

53.955*** 

(1.830) 
- 

-0.109*** 

(0.002) 

Airport-pair fixed 

effect 
… … … - 

Obs. 436,830 436,830 436,830 436,830 

Adjusted R2 0.654 0.654 0.445 0.040 
Note: ∗ 𝑝 < 0.1; ∗∗ 𝑝 < 0.05; ∗∗∗ 𝑝 < 0.01 7 
 8 
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 1 

Figure 2 Airport-Pair Fixed Effects Estimation 2 

 3 

 4 

Figure 3 Achieved Distance vs HIE (HIE is truncated to 100) 5 

5. Conclusions 6 

As an extension to (3) and (17), this study proposes econometric models to analyze flight en route 7 
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inefficiency, with emphasis on convective weather, wind, MIT, AFP, SAA and MA. We employ 1 

trajectory synthesis methods to generate hypothetical great circle trajectories for historical flights 2 

among 97 US airport pairs, and a trajectory matching framework to match those synthetic great 3 

circle routes with different factors (e.g., wind). Lastly, we develop metrics for the matched factors, 4 

and use multiple regression models with correction for heteroskedasticity and autocorrelation to 5 

quantitatively understand how they affect the flight en route inefficiency.  6 

 7 

The proposed methods relate en route performance with different “causal” factors. Great circle 8 

routes are the “most” efficient routes by definition, and the meteorological and traffic conditions 9 

throughout the routes can be treated as proxies to how attractive the great circle trajectories would 10 

be. In the worst case where there is strong headwind, lots of convective weather, traffic 11 

management initiatives and SAAs, flights deviate from the great circle, and this increases 12 

inefficiency.  13 

 14 

The estimation results, while confirm our conjectures, suggest that route structure is an important 15 

factor to en route inefficiency. Long haul flights, such as BOS to SFO, are in general more efficient 16 

than short haul flights. However, some airport pairs, even though they have similar distances, differ 17 

greatly in en route inefficiency. Examples include MDW to DTW (north) vs IAH to DFW (south), 18 

and SAN to PHX (west) vs CLE to BWI (east). Moreover, when airport-pair fixed effects are 19 

controlled, the achieved distance shows significant positive effect, indicating that inefficient 20 

terminal procedures will induce less efficient en route operations. The estimates for other 21 

covariates suggest that thunderstorm, MIT, SAA and AFP with longer assigned delays will increase 22 

the en route inefficiency, while strong tailwind on the great circle routes will reduce the inefficiency. 23 

Finally, the Monitor Alert does not appear to have much impact to en route inefficiency, which can 24 

be explained by the fact that the effect of MAs is mediated by TMI actions that are already 25 

incorporated in the model. 26 

 27 

These models have several applications. First they can help target strategies to reduce HIE by 28 

predicting how changes the different factors that are subject to human control, such as TMIs and 29 

SAAs, would affect HIE. Second, it can be used to normalize comparisons between HIE in 30 

different times, regions, or airport pairs. As a specific example, from the fixed effects estimated in 31 

the model one can identify which airport pairs are the most and least HIE, all else equal. Pairs in 32 

the former group could then be further examined to improve their HIE. 33 

 34 

  35 
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