Water–Salt Oligomers Enable Supersoluble Electrolytes for High-Performance Aqueous Batteries

Shengying Cai, Xingyuan Chu, Chang Liu, Haiwen Lai, Hao Chen, Yanqiu Jiang, Fan Guo, Zhikang Xu,* Chunsheng Wang,* and Chao Gao*

Aqueous rechargeable batteries are highly safe, low-cost, and environmentally friendly, but restricted by low energy density. One of the most efficient solutions is to improve the concentration of the aqueous electrolytes. However, each salt is limited by its physical solubility, generally below 21–32 mol kg⁻¹ (m). Here, a ZnCl₂/ZnBr₂/Zn(OAc)₂ aqueous electrolyte with a record super-solubility up to 75 m is reported, which breaks through the physical solubility limit. This is attributed to the formation of acetate-capped water–salt oligomers bridged by Br⁻/Cl⁻⁻ and Br⁻/Cl⁻⁻/O-Zn²⁺ interactions. Mass spectrometry indicates that acetate anions containing nonpolarized protons prohibit the overgrowth and precipitation of ionic oligomers. The polymer-like glass transition temperature of such inorganic electrolytes is found at ≈−70 to −60 °C, without the observation of peaks for salt-crystallization and water-freezing from 40 to −80 °C. This supersoluble electrolyte enables high-performance aqueous dual-ion batteries that exhibit a reversible capacity of 605.7 mAh g⁻¹, corresponding to an energy density of 908.5 Wh kg⁻¹, with a coulombic efficiency of 98.07%. In situ X-ray diffraction and Raman technologies reveal that such high ionic concentrations of the supersoluble electrolyte enable a stage-1 intercalation of bromine into macroscopically assembled graphene cathode.

Aqueous electrolytes resolve the concerns of battery raised over safety, cost, and environmental impact. However, their adoption has been slower due to the lack of high-energy-density electrochemical couples that has resulted from the narrow electrochemical stability window of water (1.23 V) and low capacity of cathodes. An effective method to address this problem is to adjust interactions between dissociated ions and water, which have a significant influence on parameters of electrolytes, such as viscosity, solubility, chemical reactivity, and stability. In contrast to classical aqueous electrolytes (molarity of 1 mol L⁻¹), water-in-salt electrolytes characterized by a high molality of 20–30 mol kg⁻¹ (m) greatly improved the energy density of aqueous batteries, by extending the electrochemical stability window to 3.0 V. Furthermore, a hydrate salt could dissolve another salt of similar chemical properties to form eutectic systems. Thus water-in-(bi)salt electrolytes with higher salt concentrations as well as wider electrochemical stability windows were successfully obtained, pushing the energy density of aqueous cells closer to their non-aqueous counterparts.

As water-in-(bi)salt electrolytes have approached their physical solubility limits, it is a big challenge to further increase electrolyte contents in water. Additionally, in comparison to extending the potential window, using concentrated electrolytes to increase the capacity of aqueous energy storage devices, especially which are based on non-lithium elements have rarely been exploited. Herein, we report a supersoluble electrolyte prepared by ZnCl₂ (zinc chloride), ZnBr₂ (zinc bromide), and Zn(OAc)₂ (zinc acetate) that breaks through physical solubility limits by formation of acetate-capped water-salt oligomers. This strategy significantly improves salt concentrations up to 75 m, which is much higher than those of previously reported water-in-(bi)salt hydrate melt electrolytes (21–40 m). Polymer-like structures as well as characters of such inorganic electrolytes are revealed by Raman spectroscopy, nuclear magnetic resonance (NMR) spectrum, electrospray ionization mass spectrometry (ESI-MS), and differential scanning calorimetry (DSC). An aqueous lithium-free battery charged by zinc deposition and halogen conversion-intercalation was first constructed with the water–salt oligomer electrolyte, demonstrating a high reversible capacity of 605.7 mAh g⁻¹ at 1 A g⁻¹, a cutoff voltage of 1.85 V, and a lifespan more than 500 cycles.

ZnCl₂ or ZnBr₂ is able to form a water-in-salt electrolyte with a maximum molality of ≈20 m (Figure S1a,b, Supporting Information). By utilizing the eutectic effect, a ZnCl₂/ZnBr₂ (molar ratio of 3:1) water-in-bisalt electrolyte was made and extended the concentration limit from 20 to 35 m (Figure S1c, Supporting Information). In these solutions, thermal stability of water molecules increases with salt solubility due to the reconstructed hydration environments, endowing aqueous electrolytes with heat-tolerance. Therefore, a 45 m ZnBr₀.₅Cl₁.₅+1 m...
Zn(OAc)$_2$ water–salt oligomer electrolyte (WSOE; WSOE$_X$Y is used after here, where X denotes the total molality of ZnCl$_2$ and ZnBr$_2$, and Y denotes the molality of Zn(OAc)$_2$) was successfully prepared by heating stoichiometric amounts of ZnCl$_2$, ZnBr$_2$, Zn(OAc)$_2$, and ionized water at 60°C for 2 h and then 120°C for 72 h. As a result, a transparent and colorless liquid is obtained even at room temperature, corresponding to a high density of 2.602 g cm$^{-3}$ (Figure 1a). The WSOE 45-1 is stable at 25°C for at least 24 h as shown in Figure S2a,b, Supporting Information. Ionic conductivities of the WSOE 45-1 and 1–35 m ZnBr$_{0.5}$Cl$_{1.5}$ are listed in Table S1, Supporting Information. The transference number of positive charge in WSOE 45-1 was measured to be 0.343 by a Zn$|_{\text{WSOE45-1}}|_{\text{Zn}}$ symmetric cell according to Equation (S1), Supporting Information (corresponding data used for calculation are displayed in Figure S3, Supporting Information). The crucial role of Zn(OAc)$_2$ in this condition is illustrated in Figure 1b, where salt precipitation occurred in a 40 m ZnBr$_{0.5}$Cl$_{1.5}$ aqueous solution without the addition of Zn(OAc)$_2$ during cooling process. The salt molality of WSOE was further improved to 60–75 m by adjusting the molar ratio of zinc salts, and the electrolyte transforms from a liquid to quasi-solid or hydrogel state (Figure 1c,d).

Molecular structures of 1–35 m ZnBr$_{0.5}$Cl$_{1.5}$ aqueous electrolytes, WSOE$_{45}$, and WSOE$_{45}$ were investigated by spectrosopies. Figure 1e and Figure S4, Supporting Information, show Raman band assignments and corresponding analysis results for zinc derivatives. The vibration band located at about 390 cm$^{-1}$ is assigned to zinc hydrate, which underwent an intensity weakening and blue shift from 390 to 410 cm$^{-1}$ when the salt molality was increased from 1 to 46 m. This phenomenon is ascribed to the weakened hydrolysis and enhanced hydration of Zn$^{2+}$ in concentrated electrolytes. Meanwhile, the areal proportion of polymeric species at 230 cm$^{-1}$ increases from 5.2 to 19.6% (Figure 1f), implying the formation of zinc-based oligomers in concentrated electrolytes. This is further supported by ESI-MS. For 1 m ZnBr$_{0.5}$Cl$_{1.5}$, peaks are observed at 200.9–464.8 m/z (Figure 1g, 1), whereas molecular ions of 40 m ZnBr$_{0.5}$Cl$_{1.5}$ supernatant are tested to be 208.9, 438.2, 545.3, 794.3, 957.5, 1119.9, 1471.8, 1623.3, and 1795.2 m/z (Figure 1g, 2). Oversized ionic oligomers might lead to salt precipitation, thus are invisible in the supernatant of suspension. By contrast, peaks of WSOE$_{45}$-1 are mainly observed at 1328.8 m/z (Figure 1g, 3), accompanied by negligible signals around 1400–1800 m/z. The function of Zn(OAc)$_2$ is ascribed...
to be capping agents that prevent the overgrowth of ionic oligomers. To verify this assumption, additional Zn(OAc)$_2$ (1 and 9 m) was introduced into WSOE$_{45}$-1, resulting in continuously decreased molecular weights of ionic oligomers (Figure 1g, 4 and 5). Table S2, Supporting Information, shows calculated constitutions of WSOE$_{45}$-1. As a result, both of OAc$^-$ and H$_2$O are found in these water–salt oligomers as indispensable components. In addition, Raman peaks located at 305 cm$^{-1}$ and 206 cm$^{-1}$ were originated from vibrations of molten ZnCl$_2$ and ZnBr$_2$.\(^{15,16}\) Remarkable intensification of these peaks was observed with the increment of salt concentration (Figure S4, Supporting Information), indicating a structural transformation from traditional aqueous solution into molten salts. Thermal properties of electrolytes are characterized by differential scanning calorimetry (Figure 1h, 1). In contrast to dilute aqueous solutions (1 m ZnCl$_2$, 1 m ZnBr$_2$, and 1 m ZnBr$_{0.5}$Cl$_{1.5}$ in Figure S5, Supporting Information), no peaks were observed corresponding to salt-crystallization or water-freeze of WSOE$_{45}$-1 over the entire range examined (\approx 80 to 40 $^\circ$C). Alternatively, glass transition temperature (T_g) of WSOE$_{45}$-1 was measured at \approx 70 to \approx 60 $^\circ$C, suggesting a polymer-like amorphous character of ionic oligomer-based electrolytes. The T_g rises up with the increase of Zn(OAc)$_2$ content and electrolyte concentrations (Figure 1h, 2–9), which is consistent with the increased viscosity of electrolytes.

Association states of water molecules are further examined by O-H vibrations (Figure 1i,j), that reflect the chemical environments of hydrogen and oxygen atoms within different acceptor–donor pairs.\(^{17–22}\) From 1 to 46 m, the areal proportion of coupled O-H stretch (Raman band at 3250 cm$^{-1}$; Figure S6, Supporting Information) significantly decreased from 53.8% to 5.9% (Figure S7, Supporting Information), indicating the elapse of water clusters by increasing salt concentrations. However, that of nearly non-H-bonded O-H stretch (Raman band at 3520 cm$^{-1}$; Figure S6, Supporting Information) only increased from 12.8% to 27.9% (Figure S7, Supporting Information), leaving an areal proportion of 66.2% for other states (Raman band at 3425 cm$^{-1}$; Figure S6, Supporting Information). We attribute this phenomenon to the formation of Br$^-$/Cl$^-$.\(^{−}\) H pairs in WSOE$_{45}$-1 as an alternative interaction for the O···H pair, that results in a frequency downshift of uncoupled O-H stretch. This interaction reconstructs the solvent framework of solution and connects halogen anions with water molecules to be the segment of water–salt oligomer. Fourier-transform infrared (FTIR) spectra confirmed that the H-bonded O-H content (absorption signals at 3205–3370 cm$^{-1}$; Figure S8, Supporting Information) in 1–46 m electrolytes only varied from 71.5% to 62.3% (Figure S9, Supporting Information), due to the opposite variate of O···H and Br$^-$/Cl$^-$.\(^{−}\) H pairs.

Electronic environments of water molecules in 1–46 m aqueous electrolytes are characterized by NMR. As shown in Figure S10a, Supporting Information, the 1H signal is found to move toward lower chemical shifts (from 4.75 to 3.95 ppm) with increasing salt molality. This phenomenon is ascribed to the increment of surrounding electronic density and enhanced shielding of protons in water molecules, consistent with the formation of halogen–hydrogen bonds deduced by Raman and FTIR. Meanwhile, the 17O signal is found to move toward higher chemical shifts (from 5.72 to 17.60 ppm) (Figure S10b, Supporting Information), indicating a decreased surrounding electronic density as well as weakened shielding of oxygen atoms which are resulted from the enhanced interaction between zinc cations and water molecules in water-salt oligomers. Peak broadening of both 1H and 17O signals are attributed to the insufficient relaxation time aroused by dramatically increased solution viscosity of concentrated electrolytes.\(^{10}\)

The relationship between solution structure and salt molality is further revealed from molecular dynamics simulations (Figure 2a,b). Typical molecular configurations of the WSOE$_{45}$-1 and 5 m ZnBr$_{0.5}$Cl$_{1.5}$ are displayed in Figure 2c,d, respectively. For WSOE$_{45}$-1, significantly decreased N$_{O/H}$ is found in comparison to the 5 m electrolyte (Figure 2e; Figure S11a, Supporting Information), consistent with the disappearance of coupled O-H vibration verified by FTIR and Raman spectra. With salt molality increased from 5 to 46 m, hydration number of Zn$^{2+}$ decreases from 5.51 to 1.15, and matches well with one of the oligomer structures calculated by ESI-MS results. Intensified Cl$^-$/Br$^-$.\(^{−}\) H and Cl$^-$/Br$^-$/O$_{ac}$.\(^{−}\) Zn$^{2+}$ interactions at 46 m are predicted by increased N$_{Cl/Br}$, N$_{Br/H}$, N$_{Cl/Zn}$, N$_{Br/Zn}$ as well as reduced d$_{Ow-Zn}$ (from 1.935 to 1.835 Å) (Figure 2f–j and Figure S11b–f, Supporting Information) that bond electrolyte ions with water molecules to be water–salt oligomers. For WSOE$_{45}$-1, O$_{ace}$ is observed inside the primary hydration sheath of Zn$^{2+}$ (d$_{Oace-Zn}$ = 1.665 Å). Nonpolarized protons in acetate anions are unfavorable for the formation of -CH$_3$···Cl$^-$/Br$^-$.\(^{−}\) interactions, thus avoid the overgrowth of ionic oligomers to form precipitations in WSOE$_{45}$-1. Structural scheme of dilute ZnBr$_{0.5}$Cl$_{1.5}$ aqueous solution, uncapped and acetate-capped WSOE are supplied in Figure S12, Supporting Information, on the basis of experimental and simulation results. Figure S13, Supporting Information, shows the thermo gravimetric analysis (TGA) of WSOE$_{45}$-1 and 5 m ZnBr$_{0.5}$Cl$_{1.5}$ aqueous solution. A gentler profile is observed in the former, indicating the higher stability of water molecules in water-salt oligomers.

The advantages of WSOE$_{45}$-1 are demonstrated through a dual-ion battery (DIB) which is constructed by a self-standing graphene cathode (PGA) combined with a graphene fiber fabric (GFF) in the negative side (Figures S14 and S15, Supporting Information). Electrochemical impedance spectroscopy (EIS) measurements of the DIB in different time were performed to further validate the stability of WSOE$_{45}$-1 at 25 $^\circ$C before other electrochemical tests. Similar Nyquist plots were obtained at 0, 6, 12, and 24 h in the area of high frequency (Figure S16, Supporting Information), which indicate a stable state of the assembled cell (including the electrolyte) with unchanged intrinsic/charge transfer resistance (R_s and R_{ct}). Although the increased slope of Nyquist plots at low frequency was observed as time passed, it is ascribed to the wettability of electrodes by WSOE$_{45}$-1. The battery mechanism is illustrated in Figure 3a. Upon charging, Br$^-$.\(^{−}\) is oxidized to a near-zero state Br0 and the latter intercalates into the graphite lattice of PGA cathode, resulting in a C$_{60}$[Br] graphite-intercalated compound (GIC).\(^{23}\) This procedure corresponds to the increased current of cathodic cyclic voltammetry (CV) curves between 1.0 and 1.35 V (versus Ag/AgCl), obtained by a three-electrode system (red plot in Figure 3b). Meanwhile, the Zn/GFF anode is formed in situ by electrodeposition of Zn on GFF below -0.65 V (versus Ag/AgCl), obtained by a three-electrode system (red plot in Figure S17a, Supporting Information).
from the graphene interlayer and reduces into Br−, consistent with the reduction peak of anodic CV curves under 1.0 V (versus Ag/AgCl). Simultaneously, Zn on the GFF is oxidized to Zn2+ again, verified by the oxidation peak that locates at −0.65 to −0.40 V (versus Ag/AgCl).

According to the Nernst equation (Equations (S2) and (S3), Supporting Information), increment of Zn2+ and Br− concentrations in electrolytes will result in an increased redox potential of Zn/Zn2+ as well as a decreased redox potential of Br−/Br. Meanwhile, due to the decreased water content in electrolytes, potentials of hydrogen and oxygen evolutions move in opposite directions to that of Zn/Zn2+ and Br−/Br, respectively. All of these variations are beneficial for avoiding water electrolysis as the process shown in Figure S17, Supporting Information. The oxidation of Br− on Ti current collector is almost irreversible as shown in Figure S18, Supporting Information, illustrating an important role of graphene host in the reversibility of cathodic reactions.

In addition, CV profile of the Zn/GFF|WSOE\textsubscript{45-1}|PGA cell is evaluated by a two-electrode system (green curve in Figure 3b) and indicates a reaction range of 1.70–1.85 V for battery charge and 1.70–1.20 V for discharge. Figure 3c,d shows the charge/discharge behaviors of DIBs when cutoff voltages were gradually increased from 1.81 to 1.85 V at 1 A g−1. The specific capacity increased from 306.2 to 605.7 mAh g−1 (corresponding to a GIC of C\textsubscript{3.7}Br, calculated by Equation (S4), Supporting Information) during this process (based on the cathode mass). Given both parameters of high-specific capacity and satisfactory coulombic efficiency (CE ≈97–98%) confirmed by the galvanostatic charge–discharge (GCD) technology, 1.85 V was considered as an ideal cutoff voltage for the Zn/GFF|WSOE\textsubscript{45-1}|PGA cell. For comparison, GCD curves of DIBs beyond 1.85 V are shown in Figure S19, Supporting Information.

Figure 2. Molecular dynamics simulation. a,b) Snapshots of the WSOE\textsubscript{45-1} (a) and 5 m ZnBr\textsubscript{0.5}Cl\textsubscript{1.5} aqueous solution (b) during MD simulations. Atom colors: Zn, gray; O, red; H, white; C, blue; Cl, green; Br, purple. Interactions: O···H, red line; Cl−···H, green line; Br···H, blue line; O···Zn2+, gray line. c,d) Typical molecular conformations extracted from patterns A and B. e–g) Radial distribution functions (solid line) and integral curves (dashed line) of H atoms, h–j) Zn atoms in 5 m ZnBr\textsubscript{0.5}Cl\textsubscript{1.5} aqueous electrolytes and WSOE\textsubscript{45-1}. Abbreviations: O\textsubscript{w} denotes oxygen atoms from water molecule, and O\textsubscript{ace} denotes oxygen atoms from acetate anions.
situations. We attribute this phenomenon to the completely saturated lattice of Br-GIC which cannot accommodate and stabilize more bromine at higher voltages.

In order to demonstrate the crucial role of supersoluble electrolyte in the reversible halogen conversion-intercalation chemistry,[23] DIBs based on 5, 10, 30 m ZnBr_{0.5}Cl_{1.5}, WSOE_{40-1}, and WSOE_{45-1} were fabricated. As shown in Figure 3e–g and Figure S20, Supporting Information, the discharge capacity of Zn/GFF | electrolyte | PGA cells significantly increases from 29.5 to 605.7 mAh g^{-1} upon the increment of salt concentrations from 5 to 46 m, meanwhile the coulombic efficiency increases from 4.72% to 98.07%. We ascribe this phenomenon to the suppressed shuttle effect and promoted intercalation of Br in the condition of concentrated electrolytes. Because most Br^{-} ions are conserved as anionic halozinc complexes (such as ZnBr_{n}^{2-}, as confirmed by the Raman spectra in Figure S4, Supporting Information) in concentrated zinc-based electrolytes, it is hard for the oxidized bromine to form polybromides (Br_{3}^{-}, Br_{5}^{-}, etc.) by coordinating Br^{-} anions that widely exist in dilute aqueous solutions, which alleviates the shuttle effect of the polybromides. On the contrary, in dilute situations, Br or Br_{2} species formed by oxidation of Br^{-} anions during charging are inclined to dissolve in the aqueous solution rather than intercalate into the graphite lattice. Moreover, Br_{2} that shuttled to the negative side will further corrode the anode, resulting in an inefficient deposition of metallic zinc.

The rate capability of DIBs was evaluated by increasing the current density from 1.0 to 2.0 A g^{-1}, and corresponding results are shown in Figure 4a. The rate capability of our dual-ion batteries is compromised by ionic conductivity of water–salt oligomer electrolytes (1.28 mS cm^{-1}) due to high salt concentrations. Thus, the energy density is significantly decreased when higher current densities are employed. Although higher capacity above 605.7 mAh g^{-1} was achieved at even slower rates, the reversibility of batteries decreased in this condition (such as 0.5 A g^{-1} in Figure S21a, Supporting Information). We ascribe this phenomenon to reduced-overpotentials for Br^{-} oxidation at low current densities, by which an excess of Br is produced at original potentials. A voltage-controlled strategy was used at 0.5 A g^{-1} to limit the over-oxidation of Br^{-} and ensure the reversibility of batteries (Figure S21b,c, Supporting Information). In other words, the specific capacity has to be controlled around 605.7 mAh g^{-1} to avoid the decrement of coulombic efficiency. The Zn/GFF | WSOE_{45-1} | PGA cells demonstrated excellent cycle stability (Figure 4b), with 74.5% of initial capacity retained after 500 cycles at 1 A g^{-1}. The structure of graphene cathode was well maintained after the cycling test (Figure S22a–c, Supporting Information). The stability of Zn stripping/plating in WSOE_{45-1} was also affirmed by a Zn | WSOE_{45-1} | Zn symmetric cell as shown in Figure S22d, Supporting Information. To explore the causes of capacity recession during long-term tests, X-ray photoelectron spectroscopy (XPS) was used to characterize the cycled PGA cathode. As a result, C–Br covalent bonds (286.9 and 70.0 eV in Figures S22e and 22f, Supporting Information, respectively) were found in the cycled PGA at a discharged state, which account for the recession of battery capacity by weakening the reversibility of Br-intercalation/deintercalation. This problem should be overcome in the future work. We measured the EIS of PGA cathode in WSOE_{45-1} with a three-electrode setup at different states of charge (SOC). As a result, the interfacial resistance between PGA cathode and electrolyte (R_{ct,1} in Figure 4c) decreases with SOC (from 224.7 to 211.3 Ω), which can be explained by infiltration...
of the WSOE45-1 into electrodes. Simultaneously, the intrinsic resistance of the Nyquist plot is also gradually reduced (from 22.8 to 20.1 Ω), which is caused by the increased electrical conductivity of graphene assembly after Br-intercalation. During charge, a new interfacial resistance ($R_{ct,2}$ in Figure 4c) is observed and increases with SOC (from 31.3 to 51.1 Ω). This result is attributed to accumulated halogen species on the cathode. More detailed analyses of the Nyquist plots are provided in Figure S23, Supporting Information. The most significant advantage of our DIBs is the high specific capacity of PGA cathode in WSOE45-1, which is benefited from the ultrahigh ionic concentration of electrolyte. The energy density of the PGA cathode was calculated to be 908.5 Wh kg$^{-1}$ (the theoretical cell-level energy density is 109.2 Wh kg$^{-1}$ or 238.2 Wh L$^{-1}$, calculated by Equation (S5), Supporting Information), and is greater than that of most state-of-the-art cathodes as shown in Figure 4d,e.[11,26–35] The high power density of our dual-ion batteries at 1 A g$^{-1}$ in Figure 4e is attributed to high concentrations of electrolyte ions in the electrical double-layer near electrodes, which provide enough active materials for electrode reactions and alleviate the dependence of mass transfer. Comparisons of electrochemical performances between our dual-ion batteries and more devices are provided in Tables S3–S7, Supporting Information. Moreover, the cost of the WSOE45-1 is much cheaper than that of previously reported concentrated electrolytes as shown in Tables S8 and S9, Supporting Information. The safety and environmental tolerance of DIBs are demonstrated by Movies S1–S3 and Figure S24, Supporting Information.

In situ Raman spectroscopy (100–500 cm$^{-1}$) was performed to probe the intercalated Br in graphene cathode (Figure 5a). A characteristic peak at 242 cm$^{-1}$ was observed and gradually intensified with the SOC, corresponding to the stretch-mode of intercalated Br$_2$ in graphite lattice. Compared with free Br$_2$ (liquid) located at 318 cm$^{-1}$, a frequency downshift for intercalated Br$_2$ was found resulted from the interaction with graphene layer which weakens the interatomic bonds of halogen intercalants.[36] No free Br$_2$ peak was detected during charge/discharge processes, indicating that almost all of the oxidized bromines were intercalated into the graphitic structure of PGA cathode rather than simply absorbed on the surface of electrode, which is benefited from the ultrahigh concentration of electrolyte as abovementioned. When discharge process was carried out, the intercalated-Br peak is gradually weakened and even disappeared with the SOC at 0%, demonstrating a good reversibility of the intercalation and deintercalation process of Br. The intercalation of ions, atoms, and molecules into graphitic materials has an effect on their lattice parameters as well as Raman vibrations.[37] Figure 5b shows structural evolutions of the PGA cathode during charge/discharge processes by in situ Raman spectroscopy (1500–1650 cm$^{-1}$). Upon charging, Br intercalated into PGA cathode, meanwhile the graphite G band (1580 cm$^{-1}$) diminishes and first shifts to 1612 cm$^{-1}$, corresponding to a stage-2 Br-GIC structure.[38] The peak further shifts from 1612 to 1625 cm$^{-1}$ at 100% SOC, indicating a stage-1 Br-GIC structure of the PGA cathode in this condition. Such a stage-1 Br-GIC was only previously observed in a single-layer graphene by
Jung et al., whereas it is hardly to be achieved in macroscopic graphene assemblies (such as the PGA cathode) by chemical doping.\[38\] We attribute the stage-1 Br-GIC structure of PGA to the two reasons: 1) The activity of electrolyte (Br\(^-\)) is increased by salt molality,\[39\] that promotes the oxidation of Br\(^-\) anions. 2) The dissolution of oxidized Br into electrolyte is suppressed by highly concentrated WSOE\(_{45-1}\) (Figure S25, Supporting Information) that promotes the intercalation of Br into graphene lattice. Reversible process was observed during discharge. In addition, Raman mapping demonstrates uniform structures of pristine (Figure 5c) and Br-intercalated PGA cathode at different stages (Figure 5d,e).

X-ray diffraction (XRD) tests were also in situ performed with a DIB cell (Figure 5f). The (002) peak of PGA cathode experienced continuous shifting from 26.5° to 25.3° during charging process, indicating the gradual expansion of graphene interlayers with Br-intercalation. The \(d\)-spacing of PGA cathode at 100% SOC is calculated to be 0.352 nm, which is quite close to the theoretical value (0.35 nm) of stage-1 intercalated Br-GIC.\[33\] Upon discharging, de-intercalation of Br occurred and the expanded graphene layer gradually recovered to its pristine state again \(d_{(002)} = 0.338\) nm, representing the recovery of graphene structure in a complete charge/discharge cycle.

In summary, the polymer-like inorganic WSOEs consisted of acetate-capped water–salt oligomers break through physical solubility limits of aqueous electrolytes and demonstrate their advanced performances for rechargeable batteries. In comparison to lithium batteries (LIBs) that are troubled by limited amount and non-uniform distribution of lithium source on the earth, WSOE-based batteries driven by concentrated zinc and halogen elements provide a complement technology for low-cost and highly safe energy storages. Additionally, the WSOE may also be favored in other areas, such as polymer-free solid electrolyte and synthesis media.

Experimental Section

Materials: Zinc chloride (≥98.0%), zinc bromide (≥99.9%), and zinc acetate (≥99.0%) were purchased from Shanghai Aladdin Bio-Chem Technology Co., Ltd. Graphene oxide with average lateral size of 20 \(\mu\)m was acquired from GaoxiTech Co., Ltd. All reagents were used as received without any further treatment. Deionized water was generated by PW Ultrapure Water System and had a resistivity of 18 M\(\Omega\) cm.

Preparation of Electrolyte: WSOE: Typically, the WSOE\(_{45-1}\) was prepared by dissolving 9.200 g (0.0225 mol) ZnCl\(_2\), 5.067 g (0.0675 mol) ZnBr\(_2\), and 0.367 (0.002 mol) Zn(CH\(_3\)COO)\(_2\) in 2.0 g deionized water, and then heated at 60 °C for 2 h and then 120 °C for 72 h. Resultant solutions were cooled at room temperature before tests. Conventional electrolytes: 1–30 m ZnCl\(_2\), 1–30 m ZnBr\(_2\), and 1–35 m ZnBr\(_0.5\)Cl\(_1.5\) aqueous solutions were prepared by dissolving zinc salts in water solvent at 60 °C under stirring, and cooled down at room temperature before tests.

NMR: NMR spectra were obtained on a Bruker 500 MHz NMR spectrometer (DMX-500). Typically, 0.5 mL of electrolyte was added into a 5 mm glass NMR tube for characterization and chloroform-d (CDCl\(_3\)) in a sealed coaxial glass tube was used for reference. NMR
Raman Spectroscopy for Electrolytes: Electrolyte was dropped in a dry glass slide and then immediately tested by inVia-Reflex (Renishaw plc) with a laser of 532 nm wavelength.

Electro spray Ionization Mass Spectrometry: The electrolytes were first diluted by anhydrous methyl alcohol (mass ratio = 1:50), and then used for analysis.

FTIR Spectroscopy: FTIR spectra were collected by a Nicolet 5700 spectrometer mounted with an attenuated total reflectance accessory. Electrolyte solutions were analyzed using 16 scans with a 4 cm⁻¹ resolution from 4000 to 650 cm⁻¹. Background correction was performed by measuring the ambient atmosphere in the same conditions.

DSC: DSC traces were obtained on a Perkin Elmer DSC4000. Electrolytes (≈5–10 mg) were added into aluminum Tzero pans and hermetically sealed with a Tzero Sample press. Samples were cooled from room temperature to ≈80 °C at a rate of 5 °C min⁻¹.

MD Simulations: The simulation box consisted of a cube box with length of 50 Å containing several ion pairs and water molecules. Parameters of atomic models of OAc were based on the OPLS-AA force field. Initial structures for molecular dynamic simulation were constructed by Packmol software package. The ion pairs of salts and water molecules were randomly placed in a simulated box for providing homogenous structures. Prior to the dynamics simulation, the steepest descent algorithm was used to pre-equalize the system for eliminating the excessive stress in initial structures. After pre-equilibrium, an NPT ensemble was used to equilibrate the system under room conditions (298 K and 1 atm) for 10 ns which can converge the density of the ensemble was used to equilibrate the system under room conditions (298 K and 1 atm) for 10 ns which can converge the density of the ensemble was used to equilibrate the system under room conditions.

ZnO: The ZnO nanorods were directly co-crystallized on the material by evaporation deposition. The ZnO nanorods were directly co-crystallized on the material by evaporation deposition.

The authors declare no conflict of interest.

Keywords
aqueous rechargeable batteries, supersoluble electrolytes, water–salt oligomers, zinc–halogen chemistry

Conflict of Interest
The authors declare no conflict of interest.

Acknowledgements
S.C. and X.C. contributed equally to this work. This work was supported by the National Natural Science Foundation of China (Nos. 51535008, 51603183, 51703194, and 21805242), the National Key R&D Program of China (No. 2016YFA0200200), the Hundred Talents Program of Zhejiang University (2018R05001), the Key Research and Development Plan of Zhejiang Province (2018C01049), and the Fundamental Research Funds for the Central Universities (Nos. 2017QNA4036 and 2017XZXX001-04).

Supporting Information
Supporting Information is available from the Wiley Online Library or from the author.